32 research outputs found

    MRE11 Function in Response to Topoisomerase Poisons Is Independent of its Function in Double-Strand Break Repair in Saccharomyces cerevisiae

    Get PDF
    Camptothecin (CPT) and etoposide (ETP) trap topoisomerase-DNA covalent intermediates, resulting in formation of DNA damage that can be cytotoxic if unrepaired. CPT and ETP are prototypes for molecules widely used in chemotherapy of cancer, so defining the mechanisms for repair of damage induced by treatment with these compounds is of great interest. In S. cerevisiae, deficiency in MRE11, which encodes a highly conserved factor, greatly enhances sensitivity to treatment with CPT or ETP. This has been thought to reflect the importance of double-strand break (DSB) repair pathways in the response to these to agents. Here we report that an S. cerevisiae strain expressing the mre11-H59A allele, mutant at a conserved active site histidine, is sensitive to hydroxyurea and also to ionizing radiation, which induces DSBs, but not to CPT or ETP. We show that TDP1, which encodes a tyrosyl-DNA phosphodiesterase activity able to release both 5′- and 3′-covalent topoisomerase-DNA complexes in vitro, contributes to ETP-resistance but not CPT-resistance in the mre11-H59A background. We further show that CPT- and ETP-resistance mediated by MRE11 is independent of SAE2, and thus independent of the coordinated functions of MRE11 and SAE2 in homology-directed repair and removal of Spo11 from DNA ends in meiosis. These results identify a function for MRE11 in the response to topoisomerase poisons that is distinct from its functions in DSB repair or meiotic DNA processing. They also establish that cellular proficiency in repair of DSBs may not correlate with resistance to topoisomerase poisons, a finding with potential implications for stratification of tumors with specific DNA repair deficiencies for treatment with these compounds

    Structural Basis of Gate-DNA Breakage and Resealing by Type II Topoisomerases

    Get PDF
    Type II DNA topoisomerases are ubiquitous enzymes with essential functions in DNA replication, recombination and transcription. They change DNA topology by forming a transient covalent cleavage complex with a gate-DNA duplex that allows transport of a second duplex though the gate. Despite its biological importance and targeting by anticancer and antibacterial drugs, cleavage complex formation and reversal is not understood for any type II enzyme. To address the mechanism, we have used X-ray crystallography to study sequential states in the formation and reversal of a DNA cleavage complex by topoisomerase IV from Streptococcus pneumoniae, the bacterial type II enzyme involved in chromosome segregation. A high resolution structure of the complex captured by a novel antibacterial dione reveals two drug molecules intercalated at a cleaved B-form DNA gate and anchored by drug-specific protein contacts. Dione release generated drug-free cleaved and resealed DNA complexes in which the DNA gate instead adopts an unusual A/B-form helical conformation with a Mg2+ ion repositioned to coordinate each scissile phosphodiester group and promote reversible cleavage by active-site tyrosines. These structures, the first for putative reaction intermediates of a type II topoisomerase, suggest how a type II enzyme reseals DNA during its normal reaction cycle and illuminate aspects of drug arrest important for the development of new topoisomerase-targeting therapeutics

    Ctp1 and the MRN-Complex Are Required for Endonucleolytic Rec12 Removal with Release of a Single Class of Oligonucleotides in Fission Yeast

    Get PDF
    DNA double-strand breaks (DSBs) are formed during meiosis by the action of the topoisomerase-like Spo11/Rec12 protein, which remains covalently bound to the 5′ ends of the broken DNA. Spo11/Rec12 removal is required for resection and initiation of strand invasion for DSB repair. It was previously shown that budding yeast Spo11, the homolog of fission yeast Rec12, is removed from DNA by endonucleolytic cleavage. The release of two Spo11 bound oligonucleotide classes, heterogeneous in length, led to the conjecture of asymmetric cleavage. In fission yeast, we found only one class of oligonucleotides bound to Rec12 ranging in length from 17 to 27 nucleotides. Ctp1, Rad50, and the nuclease activity of Rad32, the fission yeast homolog of Mre11, are required for endonucleolytic Rec12 removal. Further, we detected no Rec12 removal in a rad50S mutant. However, strains with additional loss of components localizing to the linear elements, Hop1 or Mek1, showed some Rec12 removal, a restoration depending on Ctp1 and Rad32 nuclease activity. But, deletion of hop1 or mek1 did not suppress the phenotypes of ctp1Δ and the nuclease dead mutant (rad32-D65N). We discuss what consequences for subsequent repair a single class of Rec12-oligonucleotides may have during meiotic recombination in fission yeast in comparison to two classes of Spo11-oligonucleotides in budding yeast. Furthermore, we hypothesize on the participation of Hop1 and Mek1 in Rec12 removal

    Gene Expression in a Drosophila Model of Mitochondrial Disease

    Get PDF
    Background A point mutation in the Drosophila gene technical knockout (tko), encoding mitoribosomal protein S12, was previously shown to cause a phenotype of respiratory chain deficiency, developmental delay, and neurological abnormalities similar to those presented in many human mitochondrial disorders, as well as defective courtship behavior. Methodology/Principal Findings Here, we describe a transcriptome-wide analysis of gene expression in tko25t mutant flies that revealed systematic and compensatory changes in the expression of genes connected with metabolism, including up-regulation of lactate dehydrogenase and of many genes involved in the catabolism of fats and proteins, and various anaplerotic pathways. Gut-specific enzymes involved in the primary mobilization of dietary fats and proteins, as well as a number of transport functions, were also strongly up-regulated, consistent with the idea that oxidative phosphorylation OXPHOS dysfunction is perceived physiologically as a starvation for particular biomolecules. In addition, many stress-response genes were induced. Other changes may reflect a signature of developmental delay, notably a down-regulation of genes connected with reproduction, including gametogenesis, as well as courtship behavior in males; logically this represents a programmed response to a mitochondrially generated starvation signal. The underlying signalling pathway, if conserved, could influence many physiological processes in response to nutritional stress, although any such pathway involved remains unidentified. Conclusions/Significance These studies indicate that general and organ-specific metabolism is transformed in response to mitochondrial dysfunction, including digestive and absorptive functions, and give important clues as to how novel therapeutic strategies for mitochondrial disorders might be developed.Public Library of Scienc

    A human 5'-tyrosyl DNA phosphodiesterase that repairs topoisomerase-mediated DNA damage

    No full text
    Topoisomerases regulate DNA topology and are fundamental to many aspects of chromosome metabolism1, 2. Their activity involves the transient cleavage of DNA, which, if it occurs near sites of endogenous DNA damage or in the presence of topoisomerase poisons, can result in abortive topoisomerase-induced DNA strand breaks3, 4, 5. These breaks feature covalent linkage of the enzyme to the DNA termini by a 3'- or 5'-phosphotyrosyl bond and are implicated in hereditary human disease6, 7, 8, chromosomal instability and cancer4, 9, and underlie the clinical efficacy of an important class of anti-tumour poisons3, 9, 10. The importance of liberating DNA termini from trapped topoisomerase is illustrated by the progressive neurodegenerative disease observed in individuals containing a mutation in tyrosyl-DNA phosphodiesterase1 (TDP1), an enzyme that cleaves 3'-phosphotyrosyl bonds6, 7, 8. However, a complementary human enzyme that cleaves 5'-phosphotyrosyl bonds has not been reported, despite the effect of DNA double-strand breaks containing such termini on chromosome instability and cancer6, 7, 8. Here we identify such an enzyme in human cells and show that this activity efficiently restores 5'-phosphate termini at DNA double-strand breaks in preparation for DNA ligation. This enzyme, TTRAP, is a member of the Mg2+/Mn2+-dependent family of phosphodiesterases. Cellular depletion of TTRAP results in increased susceptibility and sensitivity to topoisomerase-II-induced DNA double-strand breaks. TTRAP is, to our knowledge, the first human 5'-tyrosyl DNA phosphodiesterase to be identified, and we suggest that this enzyme is denoted tyrosyl DNA phosphodiesterase-2 (TDP2)
    corecore