26 research outputs found

    Antioxidant potential of bitter cumin (Centratherum anthelminticum (L.) Kuntze) seeds in in vitro models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bitter cumin (<it>Centratherum anthelminticum </it>(L.) Kuntze), is a medicinally important plant. Earlier, we have reported phenolic compounds, antioxidant, and anti-hyperglycemic, antimicrobial activity of bitter cumin. In this study we have further characterized the antioxidative activity of bitter cumin extracts in various in vitro models.</p> <p>Methods</p> <p>Bitter cumin seeds were extracted with a combination of acetone, methanol and water. The antioxidant activity of bitter cumin extracts were characterized in various <it>in vitro </it>model systems such as DPPH radical, ABTS radical scavenging, reducing power, oxidation of liposomes and oxidative damage to DNA.</p> <p>Results</p> <p>The phenolic extracts of bitter cumin at microgram concentration showed significant scavenging of DPPH and ABTS radicals, reduced phosphomolybdenum (Mo(VI) to Mo(V)), ferricyanide Fe(III) to Fe(II), inhibited liposomes oxidation and hydroxyl radical induced damage to prokaryotic genomic DNA. The results showed a direct correlation between phenolic acid content and antioxidant activity.</p> <p>Conclusion</p> <p>Bitter cumin is a good source of natural antioxidants.</p

    Robotic-assisted laparoscopic prostatectomy

    Get PDF
    Prostate cancer remains a significant health problem worldwide and is the second highest cause of cancer-related death in men. While there is uncertainty over which men will benefit from radical treatment, considerable efforts are being made to reduce treatment related side-effects and in optimising outcomes. This article reviews the development and introduction of robotic-assisted laparoscopic radical prostatectomy (RALP), the results to date, and the possible future directions of RALP

    Recovering complete and draft population genomes from metagenome datasets

    Get PDF
    Assembly of metagenomic sequence data into microbial genomes is of fundamental value to improving our understanding of microbial ecology and metabolism by elucidating the functional potential of hard-to-culture microorganisms. Here, we provide a synthesis of available methods to bin metagenomic contigs into species-level groups and highlight how genetic diversity, sequencing depth, and coverage influence binning success. Despite the computational cost on application to deeply sequenced complex metagenomes (e.g., soil), covarying patterns of contig coverage across multiple datasets significantly improves the binning process. We also discuss and compare current genome validation methods and reveal how these methods tackle the problem of chimeric genome bins i.e., sequences from multiple species. Finally, we explore how population genome assembly can be used to uncover biogeographic trends and to characterize the effect of in situ functional constraints on the genome-wide evolution

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    corecore