412 research outputs found

    Novel Inhibitor Design for Hemagglutinin against H1N1 Influenza Virus by Core Hopping Method

    Get PDF
    The worldwide spread of H1N1 avian influenza and the increasing reports about its resistance to the current drugs have made a high priority for developing new anti-influenza drugs. Owing to its unique function in assisting viruses to bind the cellular surface, a key step for them to subsequently penetrate into the infected cell, hemagglutinin (HA) has become one of the main targets for drug design against influenza virus. To develop potent HA inhibitors, the ZINC fragment database was searched for finding the optimal compound with the core hopping technique. As a result, the Neo6 compound was obtained. It has been shown through the subsequent molecular docking studies and molecular dynamic simulations that Neo6 not only assumes more favorable conformation at the binding pocket of HA but also has stronger binding interaction with its receptor. Accordingly, Neo6 may become a promising candidate for developing new and more powerful drugs for treating influenza. Or at the very least, the findings reported here may provide useful insights to stimulate new strategy in this area

    Design Novel Dual Agonists for Treating Type-2 Diabetes by Targeting Peroxisome Proliferator-Activated Receptors with Core Hopping Approach

    Get PDF
    Owing to their unique functions in regulating glucose, lipid and cholesterol metabolism, PPARs (peroxisome proliferator-activated receptors) have drawn special attention for developing drugs to treat type-2 diabetes. By combining the lipid benefit of PPAR-alpha agonists (such as fibrates) with the glycemic advantages of the PPAR-gamma agonists (such as thiazolidinediones), the dual PPAR agonists approach can both improve the metabolic effects and minimize the side effects caused by either agent alone, and hence has become a promising strategy for designing effective drugs against type-2 diabetes. In this study, by means of the powerful “core hopping” and “glide docking” techniques, a novel class of PPAR dual agonists was discovered based on the compound GW409544, a well-known dual agonist for both PPAR-alpha and PPAR-gamma modified from the farglitazar structure. It was observed by molecular dynamics simulations that these novel agonists not only possessed the same function as GW409544 did in activating PPAR-alpha and PPAR-gamma, but also had more favorable conformation for binding to the two receptors. It was further validated by the outcomes of their ADME (absorption, distribution, metabolism, and excretion) predictions that the new agonists hold high potential to become drug candidates. Or at the very least, the findings reported here may stimulate new strategy or provide useful insights for discovering more effective dual agonists for treating type-2 diabetes. Since the “core hopping” technique allows for rapidly screening novel cores to help overcome unwanted properties by generating new lead compounds with improved core properties, it has not escaped our notice that the current strategy along with the corresponding computational procedures can also be utilized to find novel and more effective drugs for treating other illnesses

    Prediction of Ligand Binding Using an Approach Designed to Accommodate Diversity in Protein-Ligand Interactions

    Get PDF
    Computational determination of protein-ligand interaction potential is important for many biological applications including virtual screening for therapeutic drugs. The novel internal consensus scoring strategy is an empirical approach with an extended set of 9 binding terms combined with a neural network capable of analysis of diverse complexes. Like conventional consensus methods, internal consensus is capable of maintaining multiple distinct representations of protein-ligand interactions. In a typical use the method was trained using ligand classification data (binding/no binding) for a single receptor. The internal consensus analyses successfully distinguished protein-ligand complexes from decoys (r2, 0.895 for a series of typical proteins). Results are superior to other tested empirical methods. In virtual screening experiments, internal consensus analyses provide consistent enrichment as determined by ROC-AUC and pROC metrics

    Autism as a disorder of neural information processing: directions for research and targets for therapy

    Get PDF
    The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself

    Polyglutamine Expansion Accelerates the Dynamics of Ataxin-1 and Does Not Result in Aggregate Formation

    Get PDF
    Polyglutamine expansion disorders are caused by an expansion of the polyglutamine (polyQ) tract in the disease related protein, leading to severe neurodegeneration. All polyQ disorders are hallmarked by the presence of intracellular aggregates containing the expanded protein in affected neurons. The polyQ disorder SpinoCerebellar Ataxia 1 (SCA1) is caused by a polyQ-expansion in the ataxin-1 protein, which is thought to lead to nuclear aggregates.Using advanced live cell fluorescence microscopy and a filter retardation assay we show that nuclear accumulations formed by polyQ-expanded ataxin-1 do not resemble aggregates of other polyQ-expanded proteins. Instead of being static, insoluble aggregates, nuclear accumulations formed by the polyQ-expanded ataxin-1 showed enhanced intracellular kinetics as compared to wild-type ataxin-1. During mitosis, ataxin-1 accumulations redistributed equally among daughter cells, in contrast to polyQ aggregates. Interestingly, polyQ expansion did not affect the nuclear-cytoplasmic shuttling of ataxin-1 as proposed before.These results indicate that polyQ expansion does not necessarily lead to aggregate formation, and that the enhanced kinetics may affect the nuclear function of ataxin-1. The unexpected findings for a polyQ-expanded protein and their consequences for ongoing SCA1 research are discussed

    Modelling molecular interaction pathways using a two-stage identification algorithm

    Get PDF
    In systems biology, molecular interactions are typically modelled using white-box methods, usually based on mass action kinetics. Unfortunately, problems with dimensionality can arise when the number of molecular species in the system is very large, which makes the system modelling and behavior simulation extremely difficult or computationally too expensive. As an alternative, this paper investigates the identification of two molecular interaction pathways using a black-box approach. This type of method creates a simple linear-in-the-parameters model using regression of data, where the output of the model at any time is a function of previous system states of interest. One of the main objectives in building black-box models is to produce an optimal sparse nonlinear one to effectively represent the system behavior. In this paper, it is achieved by applying an efficient iterative approach, where the terms in the regression model are selected and refined using a forward and backward subset selection algorithm. The method is applied to model identification for the MAPK signal transduction pathway and the Brusselator using noisy data of different sizes. Simulation results confirm the efficacy of the black-box modelling method which offers an alternative to the computationally expensive conventional approach

    An online spike detection and spike classification algorithm capable of instantaneous resolution of overlapping spikes

    Get PDF
    For the analysis of neuronal cooperativity, simultaneously recorded extracellular signals from neighboring neurons need to be sorted reliably by a spike sorting method. Many algorithms have been developed to this end, however, to date, none of them manages to fulfill a set of demanding requirements. In particular, it is desirable to have an algorithm that operates online, detects and classifies overlapping spikes in real time, and that adapts to non-stationary data. Here, we present a combined spike detection and classification algorithm, which explicitly addresses these issues. Our approach makes use of linear filters to find a new representation of the data and to optimally enhance the signal-to-noise ratio. We introduce a method called “Deconfusion” which de-correlates the filter outputs and provides source separation. Finally, a set of well-defined thresholds is applied and leads to simultaneous spike detection and spike classification. By incorporating a direct feedback, the algorithm adapts to non-stationary data and is, therefore, well suited for acute recordings. We evaluate our method on simulated and experimental data, including simultaneous intra/extra-cellular recordings made in slices of a rat cortex and recordings from the prefrontal cortex of awake behaving macaques. We compare the results to existing spike detection as well as spike sorting methods. We conclude that our algorithm meets all of the mentioned requirements and outperforms other methods under realistic signal-to-noise ratios and in the presence of overlapping spikes

    De Novo Origin of Human Protein-Coding Genes

    Get PDF
    The de novo origin of a new protein-coding gene from non-coding DNA is considered to be a very rare occurrence in genomes. Here we identify 60 new protein-coding genes that originated de novo on the human lineage since divergence from the chimpanzee. The functionality of these genes is supported by both transcriptional and proteomic evidence. RNA–seq data indicate that these genes have their highest expression levels in the cerebral cortex and testes, which might suggest that these genes contribute to phenotypic traits that are unique to humans, such as improved cognitive ability. Our results are inconsistent with the traditional view that the de novo origin of new genes is very rare, thus there should be greater appreciation of the importance of the de novo origination of genes

    Tuberculosis mortality and the male survival deficit in rural South Africa:An observational community cohort study

    Get PDF
    BACKGROUND: Women live on average five years longer than men, and the sex difference in longevity is typically lower in populations with high mortality. South Africa-a high mortality population with a large sex disparity-is an exception, but the causes of death that contribute to this difference are not well understood. METHODS: Using data from a demographic surveillance system in rural KwaZulu-Natal (2000-2014), we estimate differences between male and female adult life expectancy by HIV status. The contribution of causes of death to these life expectancy differences are computed with demographic decomposition techniques. Cause of death information comes from verbal autopsy interviews that are interpreted with the InSilicoVA tool. RESULTS: Adult women lived an average of 10.4 years (95% confidence Interval 9.0-11.6) longer than men. Sex differences in adult life expectancy were even larger when disaggregated by HIV status: 13.1 (95% confidence interval 10.7-15.3) and 11.2 (95% confidence interval 7.5-14.8) years among known HIV negatives and positives, respectively. Elevated male mortality from pulmonary tuberculosis (TB) and external injuries were responsible for 43% and 31% of the sex difference in life expectancy among the HIV negative population, and 81% and 16% of the difference among people living with HIV. CONCLUSIONS: The sex differences in adult life expectancy in rural KwaZulu-Natal are exceptionally large, atypical for an African population, and largely driven by high male mortality from pulmonary TB and injuries. This is the case for both HIV positive and HIV negative men and women, signalling a need to improve the engagement of men with health services, irrespective of their HIV status
    corecore