107 research outputs found

    The Characterization of Helicobacter pylori DNA Associated with Ancient Human Remains Recovered from a Canadian Glacier

    Get PDF
    Helicobacter pylori is a gram-negative bacterium that colonizes the stomach of nearly half of the world's population. Genotypic characterization of H. pylori strains involves the analysis of virulence-associated genes, such as vacA, which has multiple alleles. Previous phylogenetic analyses have revealed a connection between modern H. pylori strains and the movement of ancient human populations. In this study, H. pylori DNA was amplified from the stomach tissue of the Kwäday Dän Ts'ìnchi individual. This ancient individual was recovered from the Samuel Glacier in Tatshenshini-Alsek Park, British Columbia, Canada on the traditional territory of the Champagne and Aishihik First Nations and radiocarbon dated to a timeframe of approximately AD 1670 to 1850. This is the first ancient H. pylori strain to be characterized with vacA sequence data. The Tatshenshini H. pylori strain has a potential hybrid vacA m2a/m1d middle (m) region allele and a vacA s2 signal (s) region allele. A vacA s2 allele is more commonly identified with Western strains, and this suggests that European strains were present in northwestern Canada during the ancient individual's time. Phylogenetic analysis indicated that the vacA m1d region of the ancient strain clusters with previously published novel Native American strains that are closely related to Asian strains. This indicates a past connection between the Kwäday Dän Ts'ìnchi individual and the ancestors who arrived in the New World thousands of years ago

    Antimetastatic Effects of Phyllanthus on Human Lung (A549) and Breast (MCF-7) Cancer Cell Lines

    Get PDF
    BACKGROUND: Current chemotherapeutic drugs kill cancer cells mainly by inducing apoptosis. However, they become ineffective once cancer cell has the ability to metastasize, hence the poor prognosis and high mortality rate. Therefore, the purpose of this study was to evaluate the antimetastatic potential of Phyllanthus (P. niruri, P. urinaria, P. watsonii, and P. amarus) on lung and breast carcinoma cells. METHODOLOGY/PRINCIPAL FINDINGS: Cytotoxicity of Phyllanthus plant extracts were first screened using the MTS reduction assay. They were shown to inhibit MCF-7 (breast carcinoma) and A549 (lung carcinoma) cells growth with IC(50) values ranging from 50-180 µg/ml and 65-470 µg/ml for methanolic and aqueous extracts respectively. In comparison, they have lower toxicity on normal cells with the cell viability percentage remaining above 50% when treated up to 1000 µg/ml for both extracts. After determining the non-toxic effective dose, several antimetastasis assays were carried out and Phyllanthus extracts were shown to effectively reduce invasion, migration, and adhesion of both MCF-7 and A549 cells in a dose-dependent manner, at concentrations ranging from 20-200 µg/ml for methanolic extracts and 50-500 µg/ml for aqueous extracts. This was followed by an evaluation of the possible modes of cell death that occurred along with the antimetastatic activity. Phyllanthus was shown to be capable of inducing apoptosis in conjunction with its antimetastastic action, with more than three fold increase of caspases-3 and -7, the presence of DNA-fragmentation and TUNEL-positive cells. The ability of Phyllanthus to exert antimetastatic activities is mostly associated to the presence of polyphenol compounds in its extracts. CONCLUSIONS/SIGNIFICANCE: The presence of polyphenol compounds in the Phyllanthus plant is critically important in the inhibition of the invasion, migration, and adhesion of cancer cells, along with the involvement of apoptosis induction. Hence, Phyllanthus could be a valuable candidate in the treatment of metastatic cancers

    Nintedanib for Systemic Sclerosis-Associated Interstitial Lung Disease

    Get PDF
    BACKGROUND: Interstitial lung disease (ILD) is a common manifestation of systemic sclerosis and a leading cause of systemic sclerosis-related death. Nintedanib, a tyrosine kinase inhibitor, has been shown to have antifibrotic and antiinflammatory effects in preclinical models of systemic sclerosis and ILD. METHODS: We conducted a randomized, double-blind, placebo-controlled trial to investigate the efficacy and safety of nintedanib in patients with ILD associated with systemic sclerosis. Patients who had systemic sclerosis with an onset of the first non-Raynaud's symptom within the past 7 years and a high-resolution computed tomographic scan that showed fibrosis affecting at least 10% of the lungs were randomly assigned, in a 1:1 ratio, to receive 150 mg of nintedanib, administered orally twice daily, or placebo. The primary end point was the annual rate of decline in forced vital capacity (FVC), assessed over a 52-week period. Key secondary end points were absolute changes from baseline in the modified Rodnan skin score and in the total score on the St. George's Respiratory Questionnaire (SGRQ) at week 52. RESULTS: A total of 576 patients received at least one dose of nintedanib or placebo; 51.9% had diffuse cutaneous systemic sclerosis, and 48.4% were receiving mycophenolate at baseline. In the primary end-point analysis, the adjusted annual rate of change in FVC was 1252.4 ml per year in the nintedanib group and 1293.3 ml per year in the placebo group (difference, 41.0 ml per year; 95% confidence interval [CI], 2.9 to 79.0; P=0.04). Sensitivity analyses based on multiple imputation for missing data yielded P values for the primary end point ranging from 0.06 to 0.10. The change from baseline in the modified Rodnan skin score and the total score on the SGRQ at week 52 did not differ significantly between the trial groups, with differences of 120.21 (95% CI, 120.94 to 0.53; P=0.58) and 1.69 (95% CI, 120.73 to 4.12 [not adjusted for multiple comparisons]), respectively. Diarrhea, the most common adverse event, was reported in 75.7% of the patients in the nintedanib group and in 31.6% of those in the placebo group. CONCLUSIONS: Among patients with ILD associated with systemic sclerosis, the annual rate of decline in FVC was lower with nintedanib than with placebo; no clinical benefit of nintedanib was observed for other manifestations of systemic sclerosis. The adverse-event profile of nintedanib observed in this trial was similar to that observed in patients with idiopathic pulmonary fibrosis; gastrointestinal adverse events, including diarrhea, were more common with nintedanib than with placebo

    SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion

    Get PDF
    The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1. In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era

    Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold

    Get PDF

    Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC

    Get PDF
    DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6  ×  6  ×  6 m 3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties

    An overview on the role of dietary phenolics for the treatment of cancers

    Full text link
    corecore