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Abstract

This paper deals with an application of the method of quasilinearization by not
demanding the Hölder continuity assumption of functions involved and by choosing
upper and lower solutions with initial time difference for nonlinear Caputo fractional
differential equations. Thus, we construct monotone flows that are generated by
solutions of linear fractional differential equations which converge uniformly and
quadratically to the unique solution of the problem. Also, necessary comparison
result concerning lower and upper solutions are proved without using Hölder
continuity.
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1 Introduction
The method of quasilinearization is employed to provide an explicit analytic represen-

tation for the solution of nonlinear differential equations. In this technique, one gets

monotone sequences whose iterates are the solutions of corresponding linear problems

and furthermore these sequences converge uniformly and quadratically to the unique

solution of the given nonlinear differential equations [1]. This is a definite advantage of

this constructive technique. Also this method has been generalized, refined and

extended in several directions so as to be applicable to a much larger class of nonlinear

problems by not demanding convexity or concavity property. Moreover, other possibi-

lities that have been explored make the method of generalized quasilinearization uni-

versally useful in applications [2-8].

The concept of noninteger order derivative, popularly known as fractional derivative

goes back to the seventeenth century [9,10]. Since that time the fractional calculus has

drawn the attention of many famous mathematicians. It is only a few decades ago, it

was realized that the derivatives of arbitrary order provide an excellent framework for

modeling the real world problems in a variety of disciplines. There has been a growing

interest in this new area to study the concept of fractional differential equations and

fractional dynamical systems [11-18].

The application of quasilinearization for fractional differential equations is a new

research area. Depending on development in fractional order differential equations,

this technique is reconsidered and similar results parallel to classical theory of
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differential equation with integer derivatives have been obtained. Recently, only a few

papers were published in this direction [19-21].

We consider the following initial value problem

cDqx(t) = f (t, x), x(t0) = x0 (1:1)

where f Î C([t0, T] × ℝ, ℝ) and cDq is the Caputo’s fractional derivative of order q,

0 < q <1.

The corresponding Volterra fractional integral equation is defined as

x(t) = x0 +
1

�(q)

t∫
t0

(t − s)q−1f (s, x(s))ds (1:2)

A large cycle of works have been done in the literature using local Hölder continuity

assumption which is needed for comparison theorems, see [16,17]. For instance, in

[22] the solution of fractional differential equations is obtained by utilizing that condi-

tion. Obviously, of great interest is the study of the solution of nonlinear fractional dif-

ferential equations without using Hölder continuity.

In this work, by not demanding Hölder continuity condition we employe the quasili-

nearization technique for the given nonlinear fractional order differential equation (1.1)

in which upper and lower solutions will have different initial times and positions.

2 Preliminaries
In this section, some basic definitions and theorems used throughout the paper are

presented. First, we begin with the definition of the class Cp [[t0, T], ℝ].

Definition 2.1. A function s (t) is called a Cp function if s Î C [(t0, T], ℝ] and

s(t) (t - t0)p Î C [[t0, T], ℝ] with p = 1 - q.

Next, we give the definition of lower and upper solutions, respectively.

Definition 2.2. A function v ÎCp [[t0, T], ℝ], p = 1 - q, 0 < q <1 is said to be a

lower solution of (1.1) if

cDqv(t) ≤ f (t, v(t)), v(t0) ≤ x(t0).

It is an upper solution if the inequalities are reversed.

Now, consider the following nonhomogeneous linear fractional differential equation,

cDqx = λx + f (t), x(t0) = x0, (2:1)

where l is a real number and f Î Cp([t0, T] × ℝ, ℝ). The equivalent Volterra frac-

tional integral equation for t0 ≤ t ≤ T is

x(t) = x0 +
λ

�(q)

t∫
t0

(t − s)q−1x(s)ds +
1

�(q)

t∫
t0

(t − s)q−1f (s)ds, (2:2)

When we apply the method of successive approximations (see [16]) to find the solu-

tion x(t) = x(t, t0, x0) explicitly for the given nonhomogeneous IVP (2.1), we obtain

x(t) = x0Eq(λ(t − t0)q) +

t∫
t0

(t − s)q−1Eq,q(λ(t − s)q)f (s)ds, t ∈ [t0,T], (2:3)
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where

Eq(t) =
∞∑
k=0

tk

�(qk + 1)
and Eq,q(t) =

∞∑
k=0

tk

�(qk + q)

are Mittag-Leffler functions of one parameter and two parameters, respectively.

If f(t) ≡ 0, we get, as the solution of the corresponding homogeneous IVP

x(t) = x0Eq(λ(t − t0)q), t ∈ [t0,T]. (2:4)

Remark 2.1. Let cDqu(t) ≤ Lu(t), u(t0) = u0 where u Î Cp([t0, T], ℝ+) and L is posi-

tive constant. Then we have the estimate

u(t) ≤ u0Eq(L(t − t0)q) on [t0,T] (2:5)

When q = 1, that result reduces to well known Gronwall’s inequality. For the proof

of this remark and further information about Gronwall’s type inequality for fractional

order differential equations, one can see [23].

If u0 = 0, then u (t) = 0 identically on [t0, T].

3 Comparison Theorem
In a recent study [24], the Hölder continuity assumption is relaxed to Cp continuity of

the functions involved in the Riemann-Liouville fractional differential equation. In the

following we also prove a comparison result by not requiring the Hölder continuity

with a different argument for Caputo fractional differential equations. It is obvious that

this result is essential to extend the applicability of iterative techniques such as the

monotone iterative technique and the method of quasilinearization.

Theorem 3.1. Let v(t), w (t) Î Cp [[t0, T], ℝ] and f Î C[[t0, T] × ℝ, ℝ] and

(i) cDqv (t) ≤ f (t, v (t))

(ii) cDqw (t) ≥ f (t,w (t))

Suppose further that the standard Lipschitz condition is satisfied

f (t, x) − f (t, y) ≤ L(x − y), x ≥ y (3:1)

and L >0.

Then v(t0) ≤ w(t0) implies

v(t) ≤ w(t), t0 ≤ t ≤ T. (3:2)

Proof. Suppose that v(t) ≤ w(t) for t0 ≤ t ≤ T is not true. Then, there exists a t1 > t0
such that v(t1) > w(t1) and t0 < t1 ≤ T. Since v(t0) ≤ w(t0) we encounter with two cases

in view of the continuity of functions involved:

(i) If v(t0) < w(t0), then one can find a τ0 such that v(τ0) = w(τ0) and t0 < τ0 < t1.

Thus, we have v(t) > w(t) on (τ0, t1].

(ii) If v(t0) = w(t0), then two situations are possible. Namely, one can get v(t) > w(t)

on (t0, t1] or v(t) > w(t) on (τ0, t1] where t0 < τ0 < t1 and v(τ0) = w(τ0) as before.

In both cases, we can find an interval [t0, t1] or [τ0, t1] on which v(t) ≥ w(t).

Let us define

u(t) = v(t) − w(t) (3:3)
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and assume that u (t) is defined on [τ0, t1] (or on [t0, t1]). Note that u (t) >0 on

(τ0, t1] and u (τ0) = 0. Taking Caputo’s fractional derivative of both sides of (3.3), we

get

cDqu(t) = cDqv(t) − cDqw(t) (3:4)

By using the lower and upper properties of v (t) and w (t), we have

cDqu(t) ≤ f (t, v(t)) − f (t,w(t)) (3:5)

Since f is Lipschitz with L >0 and v(t) ≥w(t) on [τ0, t1], we obtain

cDqu(t) ≤ L.[v(t) − w(t)], (3:6)

Therefore we get

cDqu(t) ≤ Lu(t), u(τ0) = 0, (3:7)

which implies, in view of Remark 2.1,

u(t) = 0 for τ0 ≤ t ≤ t1 (3:8)

which gives a contradiction. So, we have v(t) ≤ w(t) on [t0, T].

Corollary 3.1 The function f(t, u) = s(t)u, where s (t) ≤ L is admissible in Theorem 3.1

to yield u(t) ≤ 0 on t0 ≤ t ≤ T.

Observe that a dual result of corollary 2.1 is valid.

4 Quasilinearization with Initial Time Difference
The purpose of this section is to employ the quasilinearization technique for nonlinear

Caputo’s fractional order differential equation (1.1) by choosing lower and upper solutions

with initial time difference and not imposing the Hölder continuity on functions involved.

Also, we consider the function f (t, x) on the right hand side of the equation (1.1) which

satisfies a weaker condition than convexity.

Theorem 4.1. Assume that

(i) a Î Cp [[t0, t0 + T], ℝ], t0, T >0, b Î Cp [[τ0, τ0 + T], ℝ], τ0 >0, f Î C [[t0, τ0 + T] ×

ℝ, ℝ] and

cDqα(t) ≤ f (t,α(t)), t0 ≤ t ≤ t0 + T
cDqβ(t) ≥ f (t,β(t)), τ0 ≤ t ≤ τ0 + T

with a (t0) ≤ x (s0) ≤ b(τ0) and t0 < s0 < τ0 where a(t) ≤ b (t + h1), t0 ≤ t ≤ t0 + T

and h1 = τ0 - t0;

(ii) Suppose fx (t, x) exists and following relations hold

f (t, x) ≥ f (t, y) + fx(t, y)(x − y) whenever x ≥ y and

|fx(t, x) − fx(t.y)| ≤ L|x − y|, L > 0;

(iii) f (t, x) is nondecreasing in t for each x and fx (t, x) is nondecreasing in x for

each t.

Then there exists monotone sequences {̃αn} and {β̃n} which converge uniformly and

monotonically to the unique solution of (1.1) with x (s0) = x0 on [s0, s0 + T] and the

convergence is quadratic.
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Proof. Let β̃0(t) = β(t + η1) and α̃0(t) = α(t) , t0 ≤ t ≤ t0 + T where h1 = τ0 - t0.

Then we have

β̃0(t0) = β(τ0) ≥ α(t0) = α̃(t0).

Also

cDqβ̃0(t) = cDqβ(t + η1)

≥ f (t + η1,β(t + η1))

= f
(
t + η1, β̃0(t)

)
since f (t, x) is nondecreasing in t for each x, we get

cDqβ̃0(t) ≥ f
(
t, β̃0(t)

)
Similarly, we can write

cDqα̃0(t) = cDqα0(t) ≤ f (t,α0(t)) = f (t, α̃0(t))

which shows α̃0(t) is a lower solution of the problem.

Consider the following linear fractional equations

cDqα̃n+1(t) = f (t + η2, α̃n) + fx(t + η2, α̃n)(α̃n+1 − α̃n), α̃n+1(t0) = x0 (4:1)

cDqβ̃n+1(t) = f (t + η2, β̃n) + fx(t + η2, α̃n)(β̃n+1 − β̃n), β̃n+1(t0) = x0 (4:2)

where h2 = s0 - t0. Note that unique solutions exist since the right hand side of the

equations satisfy a Lipschitz condition.

We shall show that

α̃0 ≤ α̃1 ≤ · · · ≤ α̃n ≤ β̃n ≤ · · · ≤ β̃1 ≤ β̃0 on [t0, t0 + T]. (4:3)

First we must prove

α̃0 ≤ α̃1 ≤ β̃1 ≤ β̃0 on [t0, t0 + T]. (4:4)

Set p(t) = α̃1 − α̃0 then

cDqp(t) = cDqα̃1−cDqα̃0

≥ f (t + η2, α̃0) + fx(t + η2, α̃0)(α̃1 − α̃0) − f (t + η2, α̃0)

= fx(t + η2, α̃0)(α̃1 − α̃0)
cDqp(t) ≥ fx(t + η2, α̃0)p, p(t0) ≥ 0.

Hence applying Corollary 3.1, we get α̃0 ≤ α̃1 on [t0, t0 + T]. Similarly, one can

show that β̃1 ≤ β̃0 .

Now we must prove that α̃1 ≤ β̃1 on [t0, t0 + T ]. To do so, we set

p(t) = β̃1(t) − α̃1(t) , then

cDqp(t) = cDqβ̃1 − cDqα̃1

= f
(
t + η2, β̃0

)
+ fx(t + η2, α̃0)

(
β̃1 − β̃0

)
− [f (t + η2, α̃0) + fx(t + η2, α̃0)(α̃1 − α̃0)]

= f (t + η2, β̃0) − f (t + η2, α̃0) + fx(t + η2, α̃0)
(
β̃1 − β̃0 − α̃1 + α̃0

)

Yakar Advances in Difference Equations 2012, 2012:92
http://www.advancesindifferenceequations.com/content/2012/1/92

Page 5 of 9



using the inequality in (ii) we get

cDqp(t) ≥ fx(t + η2, α̃0)
(
β̃0 − α̃0

)
+ fx(t + η2, α̃0)

(
β̃1 − β̃0 − α̃1 + α̃0

)
≥ fx(t + η2, α̃0)

(
β̃1 − α̃1

)
this implies that

cDqp(t) ≥ fx(t + η2, α̃0)p(t) and p(t0) = 0

which because of Corollary 3.1 yields p (t) ≥ 0. Thus we have α̃1 ≤ β̃1 on [t0, t0 +

T]. Hence (4.4) is proved.

Using mathematical induction with k >1, we obtain

α̃0 ≤ α̃k−1 ≤ α̃k ≤ β̃k ≤ β̃k−1 ≤ β̃0 on [t0, t0 + T]. (4:5)

Now we need to show that

α̃k ≤ α̃k+1 ≤ β̃k+1 ≤ β̃k on [t0, t0 + T]. (4:6)

To prove this, we set p(t) = α̃k+1 − α̃k so that utilizing equations in (4.1), (4.2) and

the inequality in (ii), we have

cDqp(t) = f (t + η2, α̃k) + fx(t + η2, α̃k)(α̃k+1 − α̃k)

− [f (t + η2, α̃k−1) + fx(t + η2, α̃k−1)(α̃k − α̃k−1)]

≥ fx(t + η2, α̃k−1)(α̃k − α̃k−1) + fx(t + η2, α̃k)(α̃k+1 − α̃k)

− fx(t + η2, α̃k−1)(α̃k − α̃k−1)

≥ fx(t + η2, α̃k)(̃αk+1 − α̃k).

Thus we obtain

cDqp(t) ≥ fx(t + η2, α̃k)p(t) and p(t0) = 0.

Again using corollary 3.1 we get α̃k ≤ α̃k+1 on [t0, t0 + T]. In a similar way, it can be

shown that β̃k ≥ β̃k+1 on [t0, t0 + T]. Next we must prove α̃k+1 ≤ β̃k+1 on [t0, t0 + T].

Let p(t) = β̃k+1 − α̃k+1 , then

cDqp(t) = cDqβ̃k+1−cDqα̃k+1

= f
(
t + η2, β̃k

)
+ fx(t + η2, α̃k)(β̃k+1 − β̃k)

− [f (t + η2, α̃k) + fx(t + η2, α̃k)(α̃k+1 − α̃k)]

≥ fx(t + η2, α̃k)
(
β̃k − α̃k

)
+ fx(t + η2, α̃k)

(
β̃k+1 − β̃k

)
− fx(t + η2, α̃k)(α̃k+1 − α̃k)

= fx(t + η2, α̃k)
[
β̃k − α̃k − α̃k+1 + α̃k + β̃k+1 − β̃k

]
≥ fx(t + η2, α̃k)

(
β̃k+1 − α̃k+1

)
Thus we have cDqp(t) ≥ fx(t + η2, α̃k)p(t) and p (t0) = 0. It follows from the Corol-

lary 3.1 we reach α̃k+1 ≤ β̃k+1 on [t0, t0 +T]. Hence (4.6) is proved.

Employing standard techniques (see [16]), it can be easily shown that the monotone

sequences {̃αn} and {β̃n} converge uniformly and monotonically to the unique solution

x̃(t) of
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cDqx̃(t) = f (t + η2, x̃(t)), x̃(t0) = x0 (4:7)

Letting s = t + h2 and changing the variable, we have

cDqx = f (s, x), x(s0) = x0. (4:8)

Next we will prove that the convergence is quadratic. For this purpose, consider

pn+1 = x̃ − α̃n+1

Note that pn+1 (t0) = 0. So we have

cDqpn+1 = cDqx̃ − cDqα̃n+1

= f (t + η2, x̃) − [f (t + η2, α̃n) + fx(t + η2, α̃n)(α̃n+1 − α̃n)]

= [f (t + η2, x̃) − f (t + η2, α̃n)] − fx(t + η2, α̃n)(pn − pn+1)

≤ [fx(t + η2, x̃) − fx(t + η2, α̃n)]pn + fx(t + η2, α̃n)pn+1

≤ L|pn|2 + fx(t + η2, α̃n)pn+1

≤ L|pn|20 +N.pn+1

where |fx| ≤ N,
∣∣pn∣∣0 = max

[t0,t0+T]
|pn(t)| . This inequality gives the estimate

pn+1 ≤ L
∣∣pn∣∣20

t∫
t0

(t − s)q−1Eq,q(N(t − s)q)ds

≤ N0
∣∣pn∣∣20

where N0 = LTq

q Eq,q(NTq) and Eq, q is Mittag-Leffler function.

Thus we reach the desired result

max
[t0,t0+T]

|̃x − α̃n+1| ≤ N0 max
[t0,t0+T]

∣∣x̃ − α̃n
∣∣2. (4:9)

Similarly, after using suitable computation, we get the quadratic convergence of {β̃n}
such that

max
[t0,t0+T]

∣∣∣β̃n+1 − x̃
∣∣∣ ≤ N0L

2
max

[t0,t0+T]

∣∣x̃ − α̃n
∣∣2 + 3N0L

2
max

[t0,t0+T]

∣∣∣β̃n − x̃
∣∣∣2. (4:10)

The proof is complete.

Corollary 4.1. If the assumptions of Theorem 4.1 hold with s0 = t0, then the conclu-

sion remains the same.

Proof. For the proof, we let β̃0(t) = β(t + η1), α̃0(t) = α(t), and x̃(t) = x(t) on [t0, t0 +

T] and we proceed as we did in Theorem 4.1.

Corollary 4.2. If the assumptions of Theorem 4.1 hold with s0 = τ0, then the conclu-

sion remains the same.

Proof. This time, we must set α̃0(t) = α(t − η1), β̃0(t) = β(t) and x̃(t) = x(t) on [τ0,

τ0 + T] proceed as we did in Theorem 4.1.

In case t0 > τ0, a dual result of Theorem 4.1 can be proved with some suitable

changes. Next result is given in this direction.

Theorem 4.2. Assume that
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(i) a Î Cp [[t0, t0 + T], ℝ], t0, T >0, b Î Cp [[τ0, τ0 + T], ℝ], τ0 >0, f Î C [[τ0, t0 + T] ×

ℝ, ℝ] and

cDqα(t) ≤ f (t,α(t)), t0 ≤ t ≤ t0 + T
cDqβ(t) ≥ f (t,β(t)), τ0 ≤ t ≤ τ0 + T

with a(t0) ≤ x (s0) ≤ b(τ0) and τ0 < s0 < t0 where a(t + h1) ≤ b(t), τ0 ≤ t ≤ τ0 + T and

h1 = t0 - τ0;

(ii) Suppose fx (t, x) exists and following relations hold

f (t, x) ≥ f (t, y) + fx(t, y)(x − y) whenever x ≥ y and

|fx(t, x) − fx(t.y)| ≤ L|x − y|, L > 0;

(iii) f (t, x) is nonincreasing in t for each x and fx (t, x) is nondecreasing in x for each t.

Then the conclusion of theorem 4.1 remains valid.

Proof. The proof being similar to theorem 4.1, we omit details.

5 Conclusion
In this work, the quasilinearization technique coupled with lower and upper solutions

is employed to study Caputo fractional differential equations. We have observed that

this technique is convenient even though initial functions a and b are given with initial

times. In this way, by not requiring Hölder continuity condition, one gets monotone

sequences whose iterates are solutions of corresponding linear problems and the

sequences converge uniformly and quadratically to the unique solution of the given

nonlinear problem.
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