96 research outputs found

    Gingival Fibroblasts as a Promising Source of Induced Pluripotent Stem Cells

    Get PDF
    Induced pluripotent stem (iPS) cells efficiently generated from accessible tissues have the potential for clinical applications. Oral gingiva, which is often resected during general dental treatments and treated as biomedical waste, is an easily obtainable tissue, and cells can be isolated from patients with minimal discomfort.We herein demonstrate iPS cell generation from adult wild-type mouse gingival fibroblasts (GFs) via introduction of four factors (Oct3/4, Sox2, Klf4 and c-Myc; GF-iPS-4F cells) or three factors (the same as GF-iPS-4F cells, but without the c-Myc oncogene; GF-iPS-3F cells) without drug selection. iPS cells were also generated from primary human gingival fibroblasts via four-factor transduction. These cells exhibited the morphology and growth properties of embryonic stem (ES) cells and expressed ES cell marker genes, with a decreased CpG methylation ratio in promoter regions of Nanog and Oct3/4. Additionally, teratoma formation assays showed ES cell-like derivation of cells and tissues representative of all three germ layers. In comparison to mouse GF-iPS-4F cells, GF-iPS-3F cells showed consistently more ES cell-like characteristics in terms of DNA methylation status and gene expression, although the reprogramming process was substantially delayed and the overall efficiency was also reduced. When transplanted into blastocysts, GF-iPS-3F cells gave rise to chimeras and contributed to the development of the germline. Notably, the four-factor reprogramming efficiency of mouse GFs was more than 7-fold higher than that of fibroblasts from tail-tips, possibly because of their high proliferative capacity.These results suggest that GFs from the easily obtainable gingival tissues can be readily reprogrammed into iPS cells, thus making them a promising cell source for investigating the basis of cellular reprogramming and pluripotency for future clinical applications. In addition, high-quality iPS cells were generated from mouse GFs without Myc transduction or a specific system for reprogrammed cell selection

    Why Can't Rodents Vomit? A Comparative Behavioral, Anatomical, and Physiological Study

    Get PDF
    The vomiting (emetic) reflex is documented in numerous mammalian species, including primates and carnivores, yet laboratory rats and mice appear to lack this response. It is unclear whether these rodents do not vomit because of anatomical constraints (e.g., a relatively long abdominal esophagus) or lack of key neural circuits. Moreover, it is unknown whether laboratory rodents are representative of Rodentia with regards to this reflex. Here we conducted behavioral testing of members of all three major groups of Rodentia; mouse-related (rat, mouse, vole, beaver), Ctenohystrica (guinea pig, nutria), and squirrel-related (mountain beaver) species. Prototypical emetic agents, apomorphine (sc), veratrine (sc), and copper sulfate (ig), failed to produce either retching or vomiting in these species (although other behavioral effects, e.g., locomotion, were noted). These rodents also had anatomical constraints, which could limit the efficiency of vomiting should it be attempted, including reduced muscularity of the diaphragm and stomach geometry that is not well structured for moving contents towards the esophagus compared to species that can vomit (cat, ferret, and musk shrew). Lastly, an in situ brainstem preparation was used to make sensitive measures of mouth, esophagus, and shoulder muscular movements, and phrenic nerve activity-key features of emetic episodes. Laboratory mice and rats failed to display any of the common coordinated actions of these indices after typical emetic stimulation (resiniferatoxin and vagal afferent stimulation) compared to musk shrews. Overall the results suggest that the inability to vomit is a general property of Rodentia and that an absent brainstem neurological component is the most likely cause. The implications of these findings for the utility of rodents as models in the area of emesis research are discussed. © 2013 Horn et al

    The neurobiology of mouse models syntenic to human chromosome 15q

    Get PDF
    Autism is a neurodevelopmental disorder that manifests in childhood as social behavioral abnormalities, such as abnormal social interaction, impaired communication, and restricted interest or behavior. Of the known causes of autism, duplication of human chromosome 15q11–q13 is the most frequently associated cytogenetic abnormality. Chromosome 15q11–q13 is also known to include imprinting genes. In terms of neuroscience, it contains interesting genes such as Necdin, Ube3a, and a cluster of GABAA subunits as well as huge clusters of non-coding RNAs (small nucleolar RNAs, snoRNAs). Phenotypic analyses of mice genetically or chromosomally engineered for each gene or their clusters on a region of mouse chromosome seven syntenic to human 15q11–q13 indicate that this region may be involved in social behavior, serotonin metabolism, and weight control. Further studies using these models will provide important clues to the pathophysiology of autism. This review overviews phenotypes of mouse models of genes in 15q11–q13 and their relationships to autism

    Síntese e caracterização de arcabouços de quitosana com agente antineoplásicos

    Get PDF
    O sistema de liberação controlada de fármacos através da utilização de biomateriais poliméricos associados a compostos com ação antineoplásica pode ser empregado como alternativa de tratamento de neoplasias. Desta forma, este trabalho teve como objetivo a síntese e caracterização de sistemas de arcabouços de quitosana com o agente antineoplásico (1,4-naftoquinona), cuja taxa de liberação pode ser controlada pela utilização de um agente reticulante como o tripolifosfato de sódio (TPP). O método de preparação consistiu da solubilização da quitosana em ácido acético, adição do fármaco, congelamento, liofilização e reticulação com TPP. Todas as amostras foram caracterizadas por Difração de Raios X (DRX), Microscopia Eletrônica de Varredura (MEV), Espectroscopia de Energia Dispersiva de Raios X(EDS), grau de intumescimento e biodegradação enzimática. Na MEV foi evidenciada a formação de poros interconectados com tamanhos e formas variadas em todas as estruturas estudadas caracterizando a formação de arcabouços. Já no EDS foi observada a presença de elementos químicos característico da composição química de cada material. No entanto foi observada a presença do sódio que pode estar relacionado ao agente neutralizante utilizado. A reticulação de parte dos arcabouços foi comprovada pelo DRX, EDS e aumentou a taxa de degradação enzimática in vitro dos mesmos. A incorporação do fármaco foi confirmada por DRX, grau de intumescimento e EDS. Desta forma, pode-se concluir que ocorreu à formação de arcabouços reticulados e não reticulados porosos, com propriedades morfológicas e físico-químicas que podem contribuir para carrear fármacos antineoplásicos, sendo possível controlar a taxa de degradação dos mesmos e provável liberação do fármaco
    corecore