14 research outputs found
Recommended from our members
Seepage and Evaporation Determination Using a Liquid Level Interferometer (Laser)
Research Project Technical Completion Report (A-109-Ariz.) For: United States Department of the Interior, Project Dates: 1981-1983, September 1, 1983. / The Research on which this project is based was financed in part by the U.S. Department of the Interior, as authorized by the Water Research and Development Act of 1978 (P.L. 95-467)A liquid level interferometer has been built to measure changes in water level to an accuracy of /8. A novel magnetic suspension is used to position the floating retroreflector of a laser interferometer. Direction sensing is achieved by dual optical channels phased near quadrature by means of an absorbing beamsplitter. The interferometer (laser) has been used to measure very accurately the drop in water level of a lined reservoir. The drop in water level thus provides a precise method of measuring evaporation. It was found that this drop in water level essentially ceased when the relative humidity approached very closely or equaled 100 percent during early morning calm periods. This provides a method of determination of seepage loss. In an unlined reservoir during calm periods when the relative humidity is 100 percent any remaining drop in water level is due to seepage. The laser can measure this rate.This item is part of the Water Resources Research Center collection. It was digitized from a physical copy provided by the Water Resources Research Center at The University of Arizona. For more information about items in this collection, please contact the Center, (520) 621-9591 or see http://wrrc.arizona.edu
Recommended from our members
Red-Shifted Coumarin Luciferins for Improved Bioluminescence Imaging
Multicomponent bioluminescence imaging in vivo requires an expanded collection of tissue-penetrant probes. Toward this end, we generated a new class of near-infrared (NIR) emitting coumarin luciferin analogues (CouLuc-3s). The scaffolds were easily accessed from commercially available dyes. Complementary mutant luciferases for the CouLuc-3 analogues were also identified. The brightest probes enabled sensitive imaging in vivo. The CouLuc-3 scaffolds are also orthogonal to popular bioluminescent reporters and can be used for multicomponent imaging applications. Collectively, this work showcases a new set of bioluminescent tools that can be readily implemented for multiplexed imaging in a variety of biological settings
Inflammatory markers associated with osteoarthritis after destabilization surgery in young mice with and without Receptor for Advanced Glycation End-products (RAGE)
HtrA1, Ddr-2 and Mmp-13 are reliable biomarkers for osteoarthritis (OA), yet the exact mechanism for the upregulation of HtrA-1 is unknown. Some have shown that chondrocyte hypertrophy is associated with early indicators of inflammation including TGF- and the Receptor for Advanced Glycation End products (RAGE). To examine the correlation of inflammation with the expression of biomarkers in osteoarthritis, we performed right knee destabilization surgery on four week old wild type and RAGE knock-out (KO) mice. We assayed for HtrA-1, TGF-1, Mmp-13, and Ddr-2 in articular cartilage at 3, 7, 14 and 28 days post-surgery by immunohistochemistry on left and right knee joints. RAGE KO and wild type mice both showed staining for key OA biomarkers. However, RAGE KO mice were significantly protected against OA compared to controls. We observed a difference in the total number of chondrocytes and percentage of chondrocytes staining positive for OA biomarkers between RAGE KO and control mice. The percentage of cells staining for OA biomarkers correlated with severity of cartilage degradation. Our results indicate that the absence of RAGE did protect against the development of advanced OA. We conclude that HtrA-1 plays a role in lowering TGF-1 expression in the process of making articular cartilage vulnerable to damage associated with OA progression