1,109 research outputs found

    Nickel Isotopic Composition and Nickel/Iron Ratio in the Solar Wind: Results from SOHO/CELIAS/MTOF

    Get PDF
    Using the Mass Time-of-Flight Spectrometer (MTOF)—part of the Charge, Elements, Isotope Analysis System (CELIAS)—onboard the Solar Heliospheric Observatory (SOHO) spacecraft, we derive the nickel isotopic composition for the isotopes with mass 58, 60 and 62 in the solar wind. In addition we measure the elemental abundance ratio of nickel to iron. We use data accumulated during ten years of SOHO operation to get sufficiently high counting statistics and compare periods of different solar wind velocities. We compare our values with the meteoritic ratios, which are believed to be a reliable reference for the solar system and also for the solar outer convective zone, since neither element is volatile and no isotopic fractionation is expected in meteorites. Meteoritic isotopic abundances agree with the terrestrial values and can thus be considered to be a reliable reference for the solar isotopic composition. The measurements show that the solar wind elemental Ni/Fe-ratio and the isotopic composition of solar wind nickel are consistent with the meteoritic values. This supports the concept that low-FIP elements are fed without relative fractionation into the solar wind. Our result also confirms the absence of substantial isotopic fractionation processes for medium and heavy ions acting in the solar win

    Determination of Sulfur Abundance in the Solar Wind

    Get PDF
    Solar chemical abundances are determined by comparing solar photospheric spectra with synthetic ones obtained for different sets of abundances and physical conditions. Although such inferred results are reliable, they are model dependent. Therefore, one compares them with the values for the local interstellar medium (LISM). The argument is that they must be similar, but even for LISM abundance determinations models play a fundamental role (i.e., temperature fluctuations, clumpiness, photon leaks). There are still two possible comparisons—one with the meteoritic values and the second with solar wind abundances. In this work we derive a first estimation of the solar wind element ratios of sulfur relative to calcium and magnesium, two neighboring low-FIP elements, using 10 years of CELIAS/MTOF data. We compare the sulfur abundance with the abundance determined from spectroscopic observations and from solar energetic particles. Sulfur is a moderately volatile element, hence, meteoritic sulfur may be depleted relative to non-volatile elements, if compared to its original solar system valu

    An efficient and principled method for detecting communities in networks

    Full text link
    A fundamental problem in the analysis of network data is the detection of network communities, groups of densely interconnected nodes, which may be overlapping or disjoint. Here we describe a method for finding overlapping communities based on a principled statistical approach using generative network models. We show how the method can be implemented using a fast, closed-form expectation-maximization algorithm that allows us to analyze networks of millions of nodes in reasonable running times. We test the method both on real-world networks and on synthetic benchmarks and find that it gives results competitive with previous methods. We also show that the same approach can be used to extract nonoverlapping community divisions via a relaxation method, and demonstrate that the algorithm is competitively fast and accurate for the nonoverlapping problem.Comment: 14 pages, 5 figures, 1 tabl

    From Relational Data to Graphs: Inferring Significant Links using Generalized Hypergeometric Ensembles

    Full text link
    The inference of network topologies from relational data is an important problem in data analysis. Exemplary applications include the reconstruction of social ties from data on human interactions, the inference of gene co-expression networks from DNA microarray data, or the learning of semantic relationships based on co-occurrences of words in documents. Solving these problems requires techniques to infer significant links in noisy relational data. In this short paper, we propose a new statistical modeling framework to address this challenge. It builds on generalized hypergeometric ensembles, a class of generative stochastic models that give rise to analytically tractable probability spaces of directed, multi-edge graphs. We show how this framework can be used to assess the significance of links in noisy relational data. We illustrate our method in two data sets capturing spatio-temporal proximity relations between actors in a social system. The results show that our analytical framework provides a new approach to infer significant links from relational data, with interesting perspectives for the mining of data on social systems.Comment: 10 pages, 8 figures, accepted at SocInfo201

    In vivo sun protection factor and UVA protection factor determination using (hybrid) diffuse reflectance spectroscopy and a multi‐lambda‐LED light source

    Get PDF
    The sun protection factor (SPF) values are currently determined using an invasive procedure, in which the volunteers are irradiated with ultraviolet (UV) light. Non-invasive approaches based on hybrid diffuse reflectance spectroscopy (HDRS) have shown a good correlation with conventional SPF testing. Here, we present a novel compact and adjustable DRS test system. The in vivo measurements were performed using a multi-lambda-LED light source and an 84-channel imaging spectrograph with a fiber optic probe for detection. A transmission spectrum was calculated based on the reflectance measured with sunscreen and the reflectance measured without sunscreen. The preexposure in vitro spectrum was fitted to the in vivo spectrum. Each of the 11 test products was investigated on 10 volunteers. The SPF and UVA-PF values obtained by this new approach were compared with in vivo SPF results determined by certified test institutes. A correlation coefficient R-2 = 0.86 for SPF, and R-2 = 0.92 for UVA-PF were calculated. Having examined various approaches to apply the HDRS principle, the method we present was found to produce valid and reproducible results, suggesting that the multi-lambda-LED device is suitable for in-vivo SPF testing based on the HDRS principle as well as for in-vivo UVA-PF measurements

    Noninvasive measurement of the 308 nm LED‐based UVB protection factor of sunscreens

    Get PDF
    The current method for determining the sun protection factor (SPF) requires erythema formation. Noninvasive alternatives have recently been suggested by several groups. Our group previously developed a functional sensor based on diffuse reflectance measurements with one UVB LED, which was previously evaluated on pig ear skin. Here we present the results of a systematic in vivo study using 12 sunscreens on 10 volunteers (skin types [ST] I-III). The relationship of the UVB-LED reflectance of unprotected skin and melanin index was determined for each ST. The spatial variation of the reflectance signal of different positions was analyzed and seems to be mainly influenced by sample inhomogeneity except for high-protection factors (PFs) where signal levels are close to detection noise. Despite the low-signal levels, a correlation of the measured LED-based UVB PF with SPF reference values from test institutes with R-2 = 0.57 is obtained, suggesting a strong relationship of SPF and LED-based UVB-PF. Measured PFs tend to be lower for increasing skin pigmentation. The sensor design seems to be suitable for investigations where a fast measurement of relative changes of PFs, such as due to inhomogeneous application, bathing and sweating, is of interest
    corecore