140 research outputs found
Abrupt and spontaneous strategy switches emerge in simple regularised neural networks
Humans sometimes have an insight that leads to a sudden and drastic
performance improvement on the task they are working on. Sudden strategy
adaptations are often linked to insights, considered to be a unique aspect of
human cognition tied to complex processes such as creativity or meta-cognitive
reasoning. Here, we take a learning perspective and ask whether insight-like
behaviour can occur in simple artificial neural networks, even when the models
only learn to form input-output associations through gradual gradient descent.
We compared learning dynamics in humans and regularised neural networks in a
perceptual decision task that included a hidden regularity to solve the task
more efficiently. Our results show that only some humans discover this
regularity, whose behaviour was marked by a sudden and abrupt strategy switch
that reflects an aha-moment. Notably, we find that simple neural networks with
a gradual learning rule and a constant learning rate closely mimicked
behavioural characteristics of human insight-like switches, exhibiting delay of
insight, suddenness and selective occurrence in only some networks. Analyses of
network architectures and learning dynamics revealed that insight-like
behaviour crucially depended on a regularised gating mechanism and noise added
to gradient updates, which allowed the networks to accumulate "silent
knowledge" that is initially suppressed by regularised (attentional) gating.
This suggests that insight-like behaviour can arise naturally from gradual
learning in simple neural networks, where it reflects the combined influences
of noise, gating and regularisation.Comment: 17 pages, 5 figure
Abrupt and spontaneous strategy switches emerge in simple regularised neural networks
Humans sometimes have an insight that leads to a sudden and drastic performance improvement on the task they are working on. Sudden strategy adaptations are often linked to insights, considered to be a unique aspect of human cognition tied to complex processes such as creativity or meta-cognitive reasoning. Here, we take a learning perspective and ask whether insight-like behaviour can occur in simple artificial neural networks, even when the models only learn to form input-output associations through gradual gradient descent. We compared learning dynamics in humans and regularised neural networks in a perceptual decision task that included a hidden regularity to solve the task more efficiently. Our results show that only some humans discover this regularity, and that behaviour is marked by a sudden and abrupt strategy switch that reflects an aha-moment. Notably, we find that simple neural networks with a gradual learning rule and a constant learning rate closely mimicked behavioural characteristics of human insight-like switches, exhibiting delay of insight, suddenness and selective occurrence in only some networks. Analyses of network architectures and learning dynamics revealed that insight-like behaviour crucially depended on a regularised gating mechanism and noise added to gradient updates, which allowed the networks to accumulate “silent knowledge” that is initially suppressed by regularised gating. This suggests that insight-like behaviour can arise from gradual learning in simple neural networks, where it reflects the combined influences of noise, gating and regularisation. These results have potential implications for more complex systems, such as the brain, and guide the way for future insight research
On the Existence of Shadow Prices
For utility maximization problems under proportional transaction costs, it
has been observed that the original market with transaction costs can sometimes
be replaced by a frictionless "shadow market" that yields the same optimal
strategy and utility. However, the question of whether or not this indeed holds
in generality has remained elusive so far. In this paper we present a
counterexample which shows that shadow prices may fail to exist. On the other
hand, we prove that short selling constraints are a sufficient condition to
warrant their existence, even in very general multi-currency market models with
possibly discontinuous bid-ask-spreads.Comment: 14 pages, 1 figure, to appear in "Finance and Stochastics
Quantifiable Biomarkers of Normal Aging in the Japanese Medaka Fish (Oryzias latipes)
BACKGROUND: Small laboratory fish share many anatomical and histological characteristics with other vertebrates, yet can be maintained in large numbers at low cost for lifetime studies. Here we characterize biomarkers associated with normal aging in the Japanese medaka (Oryzias latipes), a species that has been widely used in toxicology studies and has potential utility as a model organism for experimental aging research. PRINCIPAL FINDINGS: The median lifespan of medaka was approximately 22 months under laboratory conditions. We performed quantitative histological analysis of tissues from age-grouped individuals representing young adults (6 months old), mature adults (16 months old), and adults that had survived beyond the median lifespan (24 months). Livers of 24-month old individuals showed extensive morphologic changes, including spongiosis hepatis, steatosis, ballooning degeneration, inflammation, and nuclear pyknosis. There were also phagolysosomes, vacuoles, and residual bodies in parenchymal cells and congestion of sinusoidal vessels. Livers of aged individuals were characterized by increases in lipofuscin deposits and in the number of TUNEL-positive apoptotic cells. Some of these degenerative characteristics were seen, to a lesser extent, in the livers of 16-month old individuals, but not in 6-month old individuals. The basal layer of the dermis showed an age-dependent decline in the number of dividing cells and an increase in senescence-associated β-galactosidase. The hearts of aged individuals were characterized by fibrosis and lipofuscin deposition. There was also a loss of pigmented cells from the retinal epithelium. By contrast, age-associated changes were not apparent in skeletal muscle, the ocular lens, or the brain. SIGNIFICANCE: The results provide a set of markers that can be used to trace the process of normal tissue aging in medaka and to evaluate the effect of environmental stressors
Trading with small nonlinear price impact
We study portfolio choice with small nonlinear price impact on general market dynamics. Using probabilistic techniques and convex duality, we show that the asymptotic optimum can be described explicitly up to the solution of a nonlinear ODE, which identifies the optimal trading speed and the performance loss due to the trading friction. Previous asymptotic results for proportional and quadratic trading costs are obtained as limiting cases. As an illustration, we discuss how nonlinear trading costs affect the pricing and hedging of derivative securities and active portfolio management
- …