44 research outputs found

    Reduction of spindle vibrations in milling machine by active magnetic bearing

    Get PDF
    In this study, a three-dimensional dynamic model of a milling machine is proposed. The cutting forces of the face milling process were obtained according to the cutting parameters by means of computer simulations and experiment. The cutting forces excited the dynamic model of the system. Relative displacements of the contact point of the cutting tool and the workpiece were obtained by using forced vibration analysis. These displacements affected machining accuracy of the milling machine. Therefore, radial and axial electromagnetic bearings were designed for the active control of the system and they were adapted on the spindle of the milling machine. Thereby the electromagnetic force produced around the rotating spindle reduced vibration amplitude of the cutting tool. The system was operated with and without active control and both these cases were compared. It was revealed that active control diminished cutting tool vibrations and improved machining performanc

    Reduction of spindle vibrations in milling machine by active magnetic bearing

    Get PDF
    In this study, a three-dimensional dynamic model of a milling machine is proposed. The cutting forces of the face milling process were obtained according to the cutting parameters by means of computer simulations and experiment. The cutting forces excited the dynamic model of the system. Relative displacements of the contact point of the cutting tool and the workpiece were obtained by using forced vibration analysis. These displacements affected machining accuracy of the milling machine. Therefore, radial and axial electromagnetic bearings were designed for the active control of the system and they were adapted on the spindle of the milling machine. Thereby the electromagnetic force produced around the rotating spindle reduced vibration amplitude of the cutting tool. The system was operated with and without active control and both these cases were compared. It was revealed that active control diminished cutting tool vibrations and improved machining performanc

    Phosphorylation of serine-893 in CARD11 suppresses the formation and activity of the CARD11-BCL10-MALT1 complex in T and B cells

    Get PDF
    CARD 11 acts as a gatekeeper for adaptive immune responses after T cell or B cell antigen receptor (TCR/BCR) ligation on lymphocytes. PKC theta/beta-catalyzed phosphorylation of CARD11 promotes the assembly of the CARD11-BCL10-MALT1 (CBM) complex and lymphocyte activation. Here, we demonstrated that PKC theta/beta-dependent CARD11 phosphorylation also suppressed CARD11 functions in T or B cells. Through mass spectrometry-based proteomics analysis, we identified multiple constitutive and inducible CARD11 phosphorylation sites in T cells. We demonstrated that a single TCR- or BCR-inducible phosphorylation on Ser 893 in the carboxyl terminus of CARD1 1 prevented the activation of the transcription factor NF-kappa B, the kinase JNK, and the protease MALT1. Moreover, CARD11 Ser(893) phosphorylation sensitized BCR-addicted lymphoma cells to toxicity induced by Bruton's tyrosine kinase (BTK) inhibitors. Phosphorylation of Ser 893 in CARD11 by PKCO controlled the strength of CARD11 scaffolding by impairing the formation of the CBM complex. Thus, PKCO simultaneously catalyzes both stimulatory and inhibitory CARD11 phosphorylation events, which shape the strength of CARD11 signaling in lymphocytes

    MALT1 Phosphorylation Controls Activation of T Lymphocytes and Survival of ABC-DLBCL Tumor Cells

    No full text
    The CARMA1/CARD11-BCL10-MALT1 (CBM) complex bridges T and B cell antigen receptor (TCR/BCR) ligation to MALT1 protease activation and canonical nuclear factor kappa B (NF-kappa B) signaling. Using unbiased mass spectrometry, we discover multiple serine phosphorylation sites in the MALT1 C terminus after T cell activation. Phospho-specific antibodies reveal that CBM-associated MALT1 is transiently hyper-phosphorylated upon TCR/CD28 co-stimulation. We identify a dual role for CK1 alpha as a kinase that is essential for CBM signalosome assembly as well as MALT1 phosphorylation. Although MALT1 phosphorylation is largely dispensable for protease activity, it fosters canonical NF-kappa B signaling in Jurkat and murine CD4 T cells. Moreover, constitutive MALT1 phosphorylation promotes survival of activated B cell-type diffuse large B cell lymphoma (ABC-DLBCL) cells addicted to chronic BCR signaling. Thus, MALT1 phosphorylation triggers optimal NF-kappa B activation in lymphocytes and survival of lymphoma cells

    High-throughput and high-sensitivity phosphoproteomics with the EasyPhos platform

    No full text
    Mass spectrometry has transformed the field of cell signaling by enabling global studies of dynamic protein phosphorylation ('phosphoproteomics'). Recent developments are enabling increasingly sophisticated phosphoproteomics studies, but practical challenges remain. The EasyPhos workflow addresses these and is sufficiently streamlined to enable the analysis of hundreds of phosphoproteomes at a depth of >10,000 quantified phosphorylation sites. Here we present a detailed and updated workflow that further ensures high performance in sample-limited conditions while also reducing sample preparation time. By eliminating protein precipitation steps and performing the entire protocol, including digestion, in a single 96-well plate, we now greatly minimize opportunities for sample loss and variability. This results in very high reproducibility and a small sample size requirement (<= 200 mu g of protein starting material). After cell culture or tissue collection, the protocol takes 1 d, whereas mass spectrometry measurements require -1 h per sample. Applied to glioblastoma cells acutely treated with epidermal growth factor (EGF), EasyPhos quantified 20,132 distinct phosphopeptides from 200 mu g of protein in less than 1 d of measurement time, revealing thousands of EGF-regulated phosphorylation events

    Design of a Single Line Half Duplex Protocol for Mechanical Rotary Table Systems

    No full text
    In this study, a new communication protocol, which addresses the rotary table, has been designed. Developed system works over a single line and is using slip rings. The designed communication protocol ensures the half duplex communication for multiple stations over a single cable. During the protocol design, media access methods, coding techniques and multi-node synchronization techniques were examined. These techniques have been adapted, updated and combined for the study, during the formation of the communication protocol. The designed protocol was tested and verified in the simulation environment with original software, on the microcontrollers. The protocol is aimed to be open source, flexible, easily applicable and a new solution for the distributed control problems in the field of automation and for the rotary table systems in particular

    Proposal of a Cost-Saving and Risk Prevention Mechatronic System for Water Consumption Systems of Buildings

    No full text
    This study aims to develop an integrated control system to prevent the indoor loss of water. In general, these losses occur while using the hot water, because of forgetting to close the water batteries during the water cuts, or due to faults in washing machines, dishwashers and indoor plumbing systems. In this study, a specialized solution is developed for each type of losses. Then, the developed three subsystems were combined and transformed into an integrated system. This study shows that water losses in the housing can be prevented by using advanced technologies. There are similar systems in practice, but this study is different from the others with regard to its holistic approach, addressing all three problems together. The contribution of the system to economic and social life will be great, when water saving and environmental damage are considered
    corecore