206 research outputs found

    Spatial assessment of the distribution and potential of bioenergy resources in Kazakhstan

    Get PDF
    Kazakhstan is naturally rich in fossil fuels and its economy is strongly linked to oil and gas exports. Significant coal reserves have led to an energy mix that is dominated by aging and polluting thermal power plants. Yet Kazakhstan comprises mainly grassland steppe where agriculture and livestock pastoralism dominate offering the potential for cleaner, renewable energy production from a range of agricultural and forestry wastes. Here we analyse the spatial distribution and bioenergy generation potential of different feedstocks using an ArcGIS platform and demonstrate a significant opportunity for a range of bioenergy technologies. We recommend a number of policy interventions to enable Kazakhstan to make a transition to cleaner, more accessible and locally generated supply which is also sustainable and provide a waste management solution

    Bulk Nanocrystalline Thermoelectrics Based on Bi-Sb-Te Solid Solution

    Get PDF
    A nanopowder from p-Bi-Sb-Te with particles ~ 10 nm were fabricated by the ball milling using different technological modes. Cold and hot pressing at different conditions and also SPS process were used for consolidation of the powder into a bulk nanostructure and nanocomposites. The main factors allowing slowing-down of the growth of nanograins as a result of recrystallization are the reduction of the temperature and of the duration of the pressing, the increase of the pressure, as well as addition of small value additives (like MoS2, thermally expanded graphite or fullerenes). It was reached the thermoelectric figure of merit ZT=1.22 (at 360 K) in the bulk nanostructure Bi0,4Sb1,6Te3 fabricated by SPS method. Some mechanisms of the improvement of the thermoelectric efficiency in bulk nanocrystalline semiconductors based on BixSb2-xTe3 are studied theoretically. The reduction of nanograin size can lead to improvement of the thermoelectric figure of merit. The theoretical dependence of the electric and heat conductivities and the thermoelectric power as the function of nanograins size in BixSb2-xTe3 bulk nanostructure are quite accurately correlates with the experimental data.Comment: 35 pages, 24 figures, 4 tables, 52 reference

    Modeling Habitat of Freshwater Mussels (Bivalvia:Unionidae) in the Lower Great Lakes 25 Years after the Dreissena Invasion

    Get PDF
    Finding remnant populations of species that are of conservation concern can be difficult, particularly in aquatic habitats. Models of ecological niches can aid in the discovery of refuges. Remnant populations of native freshwater mussels (unionids) have been found in Lakes Erie and St Clair. Our goals were to predict undiscovered refuges in Lake Ontario based on habitat analysis from Lake Erie and to conduct surveys to test those predictions. We built a presence-only model on environmental data including attributes of the benthic zone and shoreline where mussels occurred in Lake Erie. We found a link between small- and large-scale variables related to unionid persistence. Bathymetry, fetch, and shoreline geomorphology contributed most to the model. These variables correspond to local-scale environmental factors important for unionid survival, including presence of vegetation and substrate composition, which explained ∼22% of the variance in presence, abundance, and richness. The model predicted that 0.8% of the near-shore area of Lake Ontario should be habitat for unionids. In surveys at 34 locations on the USA shore of Lake Ontario, we found 1800 unionids of 11 species and showed that areasOntario, a result signifying generality of our model for conservation approaches to freshwater mussels

    Competitive Replacement of Invasive Congeners May Relax Impact on Native Species: Interactions among Zebra, Quagga, and Native Unionid Mussels

    Get PDF
    Determining when and where the ecological impacts of invasive species will be most detrimental and whether the effects of multiple invaders will be superadditive, or subadditive, is critical for developing global management priorities to protect native species in advance of future invasions. Over the past century, the decline of freshwater bivalves of the family Unionidae has been greatly accelerated by the invasion of Dreissena. The purpose of this study was to evaluate the current infestation rates of unionids by zebra (Dreissena polymorpha) and quagga (D. rostriformis bugensis) mussels in the lower Great Lakes region 25 years after they nearly extirpated native unionids. In 2011–2012, we collected infestation data for over 4000 unionids from 26 species at 198 nearshore sites in lakes Erie, Ontario, and St. Clair, the Detroit River, and inland Michigan lakes and compared those results to studies from the early 1990s. We found that the frequency of unionid infestation by Dreissena recently declined, and the number of dreissenids attached to unionids in the lower Great Lakes has fallen almost ten-fold since the early 1990s. We also found that the rate of infestation depends on the dominant Dreissena species in the lake: zebra mussels infested unionids much more often and in greater numbers. Consequently, the proportion of infested unionids, as well as the number and weight of attached dreissenids were lower in waterbodies dominated by quagga mussels. This is the first large-scale systematic study that revealed how minor differences between two taxonomically and functionally related invaders may have large consequences for native communities they invade

    Differences in the macrozoobenthic fauna colonising empty bivalve shells before and after invasion by Corbicula fluminea

    Get PDF
    Bivalve shells can potentially alter the structure of aquatic benthic communities. However, little is known about the effect that different shell morphologies have on their associated fauna. This study aimed to understand how empty shells, from four different freshwater bivalve species, affect macrozoobenthic communities, using the River Minho (Iberian Peninsula) as a study area. Three native (Anodonta anatina, Potomida littoralis, Unio delphinus) and one non-indigenous (Corbicula fluminea) species were used for this research. Comparisons among species and between scenarios (i.e. before and after invasion by C. fluminea) were performed. Our results suggest that macrozoobenthic community structure did not vary among treatments, with the exception of species richness, which was higher on shells of native species. Furthermore, little difference was detected when comparing scenarios with and without C. fluminea shells, despite dissimilarities in size and morphology between species. The empty shells of C. fluminea partially (in terms of density and biomass, but not in species richness) replaced the role of empty shells of native species as a physical substratum for the associated macrozoobenthic community.Martina Ilarri is supported by a Post-doc grant (SFRH/BPD/90088/2012) from the Portuguese Foundation for Science and Technology – FCT through POPH/FSE funds. This study was conducted within the scope of the project ECO-IAS: Ecosystem-level impacts of an invasive alien species, supported by FCT and COMPETE funds (contract: PTDC/AAC-AMB/116685/2010) and was also partially supported by the European Regional Development Fund (ERDF) through COMPETE funds (PEst-C/MAR/LA0015/2011) and by FCT/MEC through Portuguese funds (PIDDAC – PEst-OE/BIA/UI4050/2014).info:eu-repo/semantics/publishedVersio

    ТЕКТОНО-ГЕОФИЗИЧЕСКОЕ РАЙОНИРОВАНИЕ РАДОНОАКТИВНОСТИ ПОРОД КРИСТАЛЛИЧЕСКОГО ФУНДАМЕНТА БЕЛАРУСИ

    Get PDF
    The high degree of correlation and genetic communications between radon volume activities (RVO), main types of crystalline basement rocks, geophysical fields, and main tectonic elements has been detected. Taking into account this correlation, a map of the radon activity of the basement was designed with three types of territory marking: with RVO more than 78200 Bq/m3 , 50000–72900 Bq/m3 and 25700–44000 Bq/m3 . The particular composition of rocks, as well as structural elements of zoning of the basemenet appeared in the RVO distribution. Установлена высокая степень корреляционно-генетической связи между объемной активностью радона (ОАР) основных типов пород кристаллического фундамента, геофизическими полями и основными тектоническими элементами. На основании этой связи построена карта радоноактивности фундамента с выделением трех типов территорий: с ОАР более 78200 Бк/м3 , 50000–72900 Бк/м3 и 25700–44000 Бк/м3 . В распределении ОАР проявляются как особенности состава пород, так и элементы структурного районирования фундамента.

    Conservation of freshwater bivalves at the global scale: diversity, threats and research needs

    Get PDF
    Bivalves are ubiquitous members of freshwater ecosystems and responsible for important functions and services. The present paper revises freshwater bivalve diversity, conservation status and threats at the global scale and discusses future research needs and management actions. The diversity patterns are uneven across the globe with hotspots in the interior basin in the United States of America (USA), Central America, Indian subcontinent and Southeast Asia. Freshwater bivalves are affected by multiple threats that vary across the globe; however, pollution and natural system (habitat) modifications being consistently found as the most impacting. Freshwater bivalves are among the most threatened groups in the world with 40% of the species being near threatened, threatened or extinct, and among them the order Unionida is the most endangered. We suggest that global cooperation between scientists, managers, politicians and general public, and application of new technologies (new generation sequencing and remote sensing, among others) will strengthen the quality of studies on the natural history and conservation of freshwater bivalves. Finally, we introduce the articles published in this special issue of Hydrobiologia under the scope of the Second International Meeting on Biology and Conservation of Freshwater Bivalves held in 2015 in Buffalo, New York, USA.This work was supported by FCT—Foundation for Science and Technology, Project 3599—Promote the Scientific Production and Technological Development and Thematic 3599-PPCDT by FEDER as part of the project FRESHCO: multiple implications of invasive species on Freshwater Mussel co-extinction processes (Contract: PTDC/AGRFOR/1627/2014). FCT also supported MLL under Grant (SFRH/BD/115728/2016)

    A Spatial Survey of Environmental Indicators for Kazakhstan: An Examination of Current Conditions and Future Needs

    Get PDF
    The Republic of Kazakhstan, located in Central Asia, has experienced many years of environmental degradation, largely as a result of the poor management of its significant natural resources. In this survey, data relating to different environmental factors are critically analysed in order to understand the state of the environment. It was found that: warming trends are seen in sensitive areas (e.g. the steppe and near glaciers); drying trends are seen where there is already water stress (e.g. the Aral Sea); air quality has been declining recently (following improvements on the decadal timescale) in major urban centres, particularly Almaty; water quality appears to be improving in some areas (e.g. important lakes in the Aktobe and Zhambyl regions); and levels of exposure to radioactivity are below internationally recommended levels (where data have been found). More generally, there is an issue with data availability and quality, which requires attention if Kazakhstan is going to make the best use of its increasing investment in environmental actions. Current policies are reviewed and recommendations are made for future interventions
    corecore