45 research outputs found

    Development of a Drift-Kinetic Simulation Code for Estimating Collisional Transport Affected by RMPs and Radial Electric Field

    Get PDF
    A drift-kinetic δf simulation code is developed for estimating collisional transport in a quasi-steady state of toroidal plasma affected by resonant magnetic perturbations and radial electric field. In this paper, validity of the code is confirmed through several test calculations. It is found that radial electron flux is reduced by positive radial-electric field, although radial diffusion of electron is strongly affected by chaotic field-lines under an assumption of zero electric field

    Radially local approximation of the drift kinetic equation

    Get PDF
    A novel radially local approximation of the drift kinetic equation is presented. The new drift kinetic equation that includes both E×B and tangential magnetic drift terms is written in the conservative form and it has favorable properties for numerical simulation that any additional terms for particle and energy sources are unnecessary for obtaining stationary solutions under the radially local approximation. These solutions satisfy the intrinsic ambipolarity condition for neoclassical particle fluxes in the presence of quasisymmetry of the magnetic field strength. Also, another radially local drift kinetic equation is presented, from which the positive definiteness of entropy production due to neoclassical transport and Onsager symmetry of neoclassical transport coefficients are derived while it sacrifices the ambipolarity condition for neoclassical particle fluxes in axisymmetric and quasi-symmetric systems

    Simulation studies on temperature profile stiffness in ITG turbulent transport of helical plasmas for flux-matching technique

    Get PDF
    In the framework of the flux-matching method, which is a useful way for the validation of the gyrokinetic turbulence simulations, it is strongly demanded to evaluate the plasma profile sensitivity of the transport coefficients obtained in the employed simulation model within the profile gradient ranges estimated from the experimental observations. The sensitivity causes the plasma profile stiffness for wide ranges of the transport fluxes. In the nonlinear gyrokinetic simulations for the ion temperature gradient (ITG) turbulence in the Large Helical Device (LHD) [Takeiri et al., Nucl. Fusion 57, 102023 (2017)], it is found that the temperature gradients around the experimental nominal observations are slightly larger than the threshold of the instability, and the ion heat diffusivities are quite sensitive to the temperature gradient. The growth rates of the instability, the generations of the zonal flows, and the sensitivities of the transport coefficients to the temperature profiles depend on the radial locations, the employed simulation models, and the field configurations. Specifically, in the optimized LHD field configuration, the sensitivities are relaxed in the outer radial region due to the enhancement of the zonal flows and the reduction of the ITG instability. In order to estimate the range of the temperature gradients possible given the experimentally obtained data of the temperature with errorbars, the statistical technique, Akaike\u27s Information Criterion [H. Akaike, in Proceedings of the 2nd International Symposium on Information Theory, edited by B. N. Petrov and F. Caski (Akadimiai Kiado, Budapest, 1973), pp. 267–281] is applied. Against the range of the temperature gradients, the flux-matching method to predict the temperature gradient in helical plasmas is demonstrated

    Global modelling of tungsten impurity transport based on the drift-kinetic equation, Nuclear Fusion

    Get PDF
    A global kinetic simulation model of collisional impurity transport is developed for evaluating the radial particle flux of tungsten impurity in the edge region of a tokamak plasma. Here, the plasma including the impurity and the background ion is presupposed to be quasi-steady. The simulation model is based on the drift-kinetic equation of the impurity affected by the friction force and the thermal force, which were formulated in the previous study (Homma et al 2016 Nucl. Fusion 56 036009). The model is implemented in a drift-kinetic simulation code. We find that the magnetic drift term in the drift-kinetic equation causes the \u27global effect\u27 on the impurity transport. Here, the global effect means that the solution of the drift-kinetic equation (and also the radial particle flux) on a magnetic flux surface is influenced by the values of the solution all over the edge region

    Unc93B1 Restricts Systemic Lethal Inflammation by Orchestrating Toll-like Receptor 7 and 9 Trafficking

    Get PDF
    SummaryToll-like receptor-7 (TLR7) and 9, innate immune sensors for microbial RNA or DNA, have been implicated in autoimmunity. Upon activation, TLR7 and 9 are transported from the endoplasmic reticulum (ER) to endolysosomes for nucleic acid sensing by an ER-resident protein, Unc93B1. Little is known, however, about a role for sensor transportation in controlling autoimmunity. TLR9 competes with TLR7 for Unc93B1-dependent trafficking and predominates over TLR7. TLR9 skewing is actively maintained by Unc93B1 and reversed to TLR7 if Unc93B1 loses preferential binding via a D34A mutation. We here demonstrate that mice harboring a D34A mutation showed TLR7-dependent, systemic lethal inflammation. CD4+ T cells showed marked differentiation toward T helper 1 (Th1) or Th17 cell subsets. B cell depletion abolished T cell differentiation and systemic inflammation. Thus, Unc93B1 controls homeostatic TLR7 activation by balancing TLR9 to TLR7 trafficking

    Benchmark of a new multi-ion-species collision operator for δf Monte Carlo neoclassical simulation

    Get PDF
    A numerical method to implement a linearized Coulomb collision operator in the two-weight Monte Carlo method for multi-ion-species neoclassical transport simulation is developed. The conservation properties and the self-adjoint property of the operator in the collisions between two particle species with different temperatures are verified. The linearized operator in a Monte Carlo code is benchmarked with other two kinetic simulations, a continuum gyrokinetic code with the same linearized collision operator and a full-f PIC code with Nanbu collision operator. The benchmark simulations of the equilibration process of plasma flow and temperature fluctuation among several particle species show very good agreement between Monte Carlo code and the other two codes. An error in the H-theorem in the two-weight Monte Carlo method is found, which is caused by the weight spreading phenomenon inherent in the two-weight method. It is demonstrated that the weight averaging method serves to restoring the H-theorem without causing side effect

    Cleavage of Toll-Like Receptor 9 Ectodomain Is Required for In Vivo Responses to Single Strand DNA

    Get PDF
    Mouse toll-like receptor 9 (TLR9) is an endosomal sensor for single-stranded DNA. TLR9 is transported from the endoplasmic reticulum to endolysosomes by a multiple transmembrane protein Unc93 homolog B1, and proteolytically cleaved at its ectodomain. The structure of TLR9 and its biochemical analyses have shown that the proteolytic cleavage of TLR9 ectodomain enables TLR9-dimerization and TLR9 activation. However, the requirement of TLR9 cleavage in vivo has not been studied. We here show that the 13 amino acids deletion at the cleavage site made TLR9 resistant to proteolytic cleavage. The deletion mutation in the Tlr9 gene impaired TLR9-dependent cytokine production in conventional dendritic cells from the mutant mice. Not only in vitro, in vivo production of inflammatory cytokines (TNF-α and IL-12p40), chemokine (CCR5/RANTES), and type I interferon (IFN-α) induced by administration of TLR9 ligand was also impaired. These results demonstrate that the TLR9 cleavage is required for TLR9 responses in vivo
    corecore