
Radially local approximation of the drift
kinetic equation

journal or
publication title

Physics of Plasmas

volume 23
number 4
page range 042502
year 2016-04-07
URL http://hdl.handle.net/10655/00012615

doi: https://doi.org/10.1063/1.4945618

Creative Commons : 表示
http://creativecommons.org/licenses/by/3.0/deed.ja



ar
X

iv
:1

60
1.

03
49

1v
2 

 [
ph

ys
ic

s.
pl

as
m

-p
h]

  2
3 

M
ar

 2
01

6

Radially local approximation of the drift kinetic equation
H. Sugama,1, 2 S. Matsuoka,3 S. Satake,1, 2 and R. Kanno1, 2
1)National Institute for Fusion Science, Toki 509-5292, Japan
2)Department of Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292,
Japan
3)Japan Atomic Energy Agency, 178-4, Wakashiba, Kashiwa 277-0871, Japan

(Dated: 28 July 2021)

A novel radially local approximation of the drift kinetic equation is presented. The new drift kinetic equation
that includes both E × B and tangential magnetic drift terms is written in the conservative form and it
has favorable properties for numerical simulation that any additional terms for particle and energy sources
are unnecessary for obtaining stationary solutions under the radially local approximation. These solutions
satisfy the intrinsic ambipolarity condition for neoclassical particle fluxes in the presence of quasisymmetry
of the magnetic field strength. Also, another radially local drift kinetic equation is presented, from which the
positive definiteness of entropy production due to neoclassical transport and Onsager symmetry of neoclassical
transport coefficients are derived while it sacrifices the ambipolarity condition for neoclassical particle fluxes
in axisymmetric and quasi-symmetric systems.

PACS numbers: 52.25.Dg, 52.25.Fi, 52.25.Xz, 52.55.Hc

I. INTRODUCTION

Effects of neoclassical transport1–3 on plasma confine-
ment are more significant in stellarator and heliotron
plasmas than in tokamak plasmas because, in the for-
mer, radial drift motions of trapped particles in heli-
cal ripples enhance particle and heat transport due to
nonaxisymmetry of the magnetic configuration.4–6 Con-
ventional calculations of neoclassical transport fluxes are
done applying radially local approximation to solving the
drift kinetic equation, in which vd ·∇f are often neglected
as a small term of higher order in the normalized gy-
roradius parameter δ ∼ ρ/L. (Here, vd, f , ρ, and L
represent the guiding center drift velocity, the deviation
of the guiding center distribution function from the lo-
cal Maxwellian equilibrium distribution, the gyroradius,
and the equilibrium scale length, respectively.) However,
in stellarator and heliotron plasmas, this vd · ∇f term
is known to be influential on the resultant neoclassical
transport because it significantly changes orbits of par-
ticles trapped in helical ripples. Therefore, at least, the
E×B drift part vE ·∇f in vd ·∇f has been kept in most
studies of neoclassical transport in helical systems.7–15

Recently, it was shown by Matsuoka et al.13 that the
neoclassical transport is significantly influenced by re-
taining the magnetic drift tangential to flux surfaces in
vd ·∇f for the magnetic configuration of LHD especially
when the radial electric field is weak. However, as pointed
by Landreman et al.,14 stationary solutions of the drift
kinetic equation with radially local approximation used
require additional artificial sources (or sinks) of parti-
cles and energy when the above-mentioned drift terms
are retained. In this paper, a novel radially local drift
kinetic equation, which includes both E×B and tangen-
tial magnetic drift motions, is presented. The radially
local guiding center motion equations do not satisfy the
conservation law of the phase-space volume while the full
guiding center motion equations do. This fact causes the

difficulty in obtaining the stationary solution of the local
drift kinetic equation. However, the new local drift ki-
netic equation, which is written in the conservative form,
has favorable properties for numerical simulation such
that any additional terms for particle and energy sources
are unnecessary for obtaining stationary solutions. In
addition, it satisfies the intrinsic ambipolarity condition
for neoclassical particle fluxes in axisymmetric systems
as well as in quasi-symmetric helical systems.16,17 The
present work also treats interesting issues regarding the
entropy production rate and Onsager symmetry18,19 for
neoclassical transport equations resulting from the new
local drift kinetic model.

The rest of this paper is organized as follows. In Sec. II,
we consider the full drift kinetic model based on Little-
john’s guiding-center equations20 without radially local
approximation. Particle, energy, and parallel momentum
balance equations are derived from the full drift kinetic
equation. These balance equations are flux-surface aver-
aged to confirm that they contain the second-order terms
in δ, which represent neoclassical transport across flux
surfaces. Also, expanding the distribution function about
the local Maxwellian, we rewrite the drift kinetic equa-
tion to explicitly show that the thermodynamic forces
defined by the background density and temperature gra-
dients and the parallel electric field cause the deviation
f from the local Maxwellian. In Sec. II, a new drift
kinetic model is constructed by applying radially local
approximation to Littlejohn’s guiding-center equations
with keeping E × B and tangential magnetic drift ve-
locities. The new local drift kinetic equation for f is
shown to be compatible with the stationary solution and
to give intrinsic ambipolar particle fluxes for axisymmet-
ric and quasi-symmetric systems. In Sec. IV, we present
another radially local drift kinetic equation, from which
the positive definiteness of entropy production due to
neoclassical transport and Onsager symmetry of neoclas-
sical transport coefficients are derived although this lo-
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cal drift kinetic equation no longer guarantees rigorously
the intrinsic ambipolarity of neoclassical particle fluxes
for axisymmetric and quasi-symmetric systems. Finally,
conclusions are given in Sec. V.

II. FULL DRIFT KINETIC MODEL

A. Drift kinetic model based on Littlejohn’s

guiding-center equations

We denote the guiding-center variables by (X, U, ξ, µ),
where X represents the position vector of the guiding
center, U the parallel velocity, ξ the gyrophase defined
by the azimuthal angle of the gyroradius vector around
the magnetic field line, and µ the magnetic moment. The
Lagrangian for the guiding-center motion is given by Lit-
tlejohn20 as

L =
(e
c
A+mUb

)
· Ẋ+

mc

e
µξ̇ −H, (1)

where the Hamiltonian H is given by

H =
1

2
mU2 + µB + eΦ. (2)

Here, Φ denotes the electrostatic potential. Using
Eqs. (1) and (2), the guiding-center motion equations
are derived as

dX

dt
= Vgc ≡ Ub+

c

eB∗
‖

b× (mU2b · ∇b+ µ∇B − eE∗),

dU

dt
= − 1

m
b · (µ∇B − eE) + Ub · ∇b ·Vgc,

dξ

dt
= Ω,

dµ

dt
= 0, (3)

where Ω = eB/(mc), ∇ = ∂/∂X, E ≡ −∇Φ−c−1∂A/∂t,
B ≡ ∇ × A, E∗ ≡ −∇Φ − c−1∂A∗/∂t, B∗ ≡ ∇ × A∗,
B∗

‖ ≡ B∗ ·b, and A∗ ≡ A+(mc/e)Ub are used, and the

guiding-center drift velocity Vgc is defined by the right-
hand side of the equation for dX/dt. On the right-hand
side of the equation for dU/dt in Eq. (3), the last term
Ub · ∇b ·Vgc is smaller than other terms by the order of
δ = ρ/L where ρ and L represent the gyroradius and the
gradient scale length given by L ∼ B/|∇B| ∼ Φ/|∇Φ|.
The Jacobian for the guiding-center variables is written

as

D = det

[
∂(x,v)

∂(X, U, ξ, µ)

]
=
B∗

‖

m
(4)

where x and v denote the particle position vector and
the velocity vector, respectively. Then, the conservation
of the phase-space volume d3x d3v = Dd3X dU dξ dµ is
represented by

∂D

∂t
+∇ · (DẊ) +

∂(DU̇)

∂U
= 0, (5)

which can be proved by using Eqs. (3) and (4).
The drift kinetic equation for the distribution function

F (X, U, µ, t) is given by

(
∂

∂t
+ Ẋ · ∇+ U̇

∂

∂U

)
F (X, U, µ, t) = C(F ) + S (6)

where the total time derivative is denoted by ˙ = d/dt.
In the right-hand side of Eq. (6), C(F ) is the collision
term and the additional term S is given to represent ex-
ternal particle, momentum, and/or energy sources if any.
Here, S is considered to be of the second order in δ. We
can also treat effects of turbulent fluctuations by Eq. (6)
if we regard the second-order additional term S as the
ensemble average of the product of fluctuation parts in
the electromagnetic fields and the distribution function
as shown in Refs. 21 and 22 where the notation D is used
instead of S to represent the term including the effects
of turbulent fluctuations. Using Eq. (5), the drift kinetic
equation can be rewritten in the conservative form as

∂(DF )

∂t
+∇ · (DF Ẋ) +

∂(DFU̇)

∂U
= D[C(F ) + S]. (7)

B. Particle, energy, and parallel momentum balance

equations

Multiplying Eq. (7) with an arbitrary function
A(t,X, U, µ) which is independent of the gyrophase ξ
and taking its velocity-space integral, the balance equa-
tion for the density variable

∫
d3v FA in the X-space is

derived as

∂

∂t

(∫
d3v FA

)
+∇ ·

(∫
d3v FAẊ

)

=

∫
d3v

(
F Ȧ+ [C(F ) + S]A

)
, (8)

where

Ȧ =
dA
dt

=
∂A
∂t

+ Ẋ · ∇A+ U̇
∂A
∂U

, (9)

and the velocity-space integral is denoted by
∫
d3v =

2π
∫
dU
∫
dµD for gyrophase-independent integrands.

For the case of A = 1, Eq. (8) reduces to the time-
evolution equation for the density

∫
d3v F ,

∂

∂t

(∫
d3v F

)
+∇ ·

(∫
d3v F Ẋ

)
=

∫
d3v S. (10)

In deriving Eq. (10), the conservation law,
∫
d3v C(F ) =

0, is used. However, it is noted that, if we use the collision
operator obtained by the transformation from the par-
ticle coordinates to the guiding-center coordinates with
finite-gyroradius effects taken into account, the velocity-
space integral

∫
d3v C(F ) does not vanish but it becomes

the opposite sign of the divergence of the classical parti-
cle flux as shown in Refs. 23–25. Here and hereafter, we
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assume that the expression of C(F ) is the same as that of
the Landau collision operator given in the particle coor-
dinates for simplicity so that

∫
d3v C(F ) = 0 is satisfied

and the classical transport is neglected.
We next consider the energy E = H [see Eq. (2)] as A

in Eq. (8) and obtain the energy balance equation,

∂

∂t

(∫
d3v FE

)
+∇ ·

(∫
d3v FEẊ

)

=

∫
d3v

(
F Ė + [C(F ) + S]E

)
, (11)

where the total time derivative of the energy is written
as

Ė =
dE
dt

= e
∂Φ(X, t)

∂t
+ µ

∂B(X, t)

∂t
− e

c

∂A∗(X, t)

∂t
· Ẋ. (12)

We easily see from Eq. (12) that Ė = 0 for the stationary
electromagnetic field. When we use the kinetic energy,

W =
1

2
mU2 + µB = E − eΦ, (13)

another form of the energy balance equation is given by

∂

∂t

(∫
d3v FW

)
+∇ ·

(∫
d3v FW Ẋ

)

=

∫
d3v

(
FẆ + [C(F ) + S]W

)
, (14)

where the total time derivative of the kinetic energy is
written as

Ẇ =
dW

dt
=
dE
dt

− e
dΦ

dt

= µ
∂B(X, t)

∂t
+ eE∗ · Ẋ. (15)

The parallel momentum balance equation is derived
from Eq. (8) with A = mU as

∂

∂t

(∫
d3v FmU

)
+∇ ·

(∫
d3v FmUẊ

)

=

∫
d3v

(
FmU̇ + [C(F ) + S]mU

)
. (16)

We now use

∇ ·
(∫

d3v FmUẊ

)
−
∫
d3v FmU̇

= ∇ ·
(∫

d3v FmU2b

)
+

∫
d3v Fb · (µ∇B − eE)

+∇ ·
(∫

d3v FmUẊ⊥

)
−
∫
d3v FmUẊ⊥ · (b · ∇)b

= b ·
(
∇ ·
[∫

d3v F
(
mU2bb+ µB(I− bb)

+mU(Ẋ⊥b+ bẊ⊥)
)])

− eE‖

∫
d3v F, (17)

and rewrite Eq. (16) as

∂

∂t
(nmu‖)+b · (∇·P) = neE‖+F‖+

∫
d3v SmU. (18)

Here, the density n, the parallel flow velocity u‖, the
pressure tensor P, and the parallel friction force F‖ are
defined by

n =

∫
d3v F

nu‖ =

∫
d3v FU

P = PCGL + π2

PCGL =

∫
d3v F

(
mU2bb+ µB(I− bb)

)

π2 =

∫
d3v FmU(Ẋ⊥b+ bẊ⊥)

F‖ =

∫
d3v C(F )mU, (19)

where Ẋ⊥ ≡ Ẋ− (Ẋ ·b)b. Note that the pressure tensor
P consists of the Chew-Goldbeger-Low (CGL) tensor26

PCGL and the viscosity tensor π2 of the second order
in δ, where π2 satisfies π2 : I = π2 : bb = 0 and the
deviation of F from the local Maxwellian distribution is
considered to be of O(δ).
It is well known that, if we use the original Boltzmann

kinetic equation instead of the drift kinetic equation in
Eq. (7), we can derive the momentum balance equation,

∂

∂t
(nmu) +∇ ·P = ne

(
E+

u

c
×B

)
+F+

∫
d3v Smv,

(20)
where the Boltzmann kinetic equation is assumed to also
contain the source term S. In Eq. (20), the particle flow
nu, the pressure tensor P, and the friction force F are
defined by nu =

∫
d3v F , P =

∫
d3v Fmvv, and F =∫

d3v C(F )mv, where, exactly speaking, F = F (x,v, t)
represents the particle distribution function given by the
solution of the Boltzmann kinetic equation and it has a
gyrophase dependence that is not included in the solu-
tion of the drift kinetic equation. Comparing Eqs. (18)
and (20), we see that Eq. (18) coincides with the parallel
component of the exact momentum balance equation in
Eq. (20) except that the former contains nmu·∂b/∂t and
the non-CGL viscosity tensor expressed differently from
the one in the latter.
We now consider general toroidal configurations, for

which the magnetic field is written in terms of the flux
coordinates (s, θ, ζ) as

B = ψ′∇s×∇θ + χ′∇ζ ×∇s, (21)

where θ and ζ represent the poloidal and toroidal angles,
respectively, and s is an arbitrary label of a flux surface.
The poloidal and toroidal fluxes within a flux surface la-
beled by s are given by 2πψ(s) and 2πχ(s), respectively.
The derivative with respect to s is denoted by ′ = d/ds
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so that ψ′ = dψ/ds and χ′ = dχ/ds. Taking the flux-
surface average of the covariant toroidal component of
Eq. (20) and making the summation over species, we ob-
tain the expression for the radial current as6

χ′

c

∑

a

ea〈nau
s
a〉 =

∑

a

[
ma

∂

∂t
〈nauaζ〉+ 〈(∇ ·Pa)ζ〉

−
〈∫

d3v Samavζ

〉]
, (22)

where the superscript s and the subscript ζ represent the
covariant radial component and contravariant toroidal
component given by taking the inner products with ∇s
and ∂x/∂ζ, respectively, and the subscript a is used to
explicitly show the particle species. Using the symmetry
property of the pressure tensor P, we can show that, for
axisymmetric toroidal systems,

〈(∇ ·P)ζ〉 =
1

V ′

∂

∂s
(V ′〈P s

ζ 〉), (23)

where P s
ζ = ∇s ·P · ∂x/∂ζ. In axisymmetric and quasi-

axisymmetric toroidal systems,17 we have

〈(∇ ·PCGL)ζ〉 = 0. (24)

Then, using Eqs. (22)–(24) and P = PCGL + π2, we
find that, even for axisymmetric toroidal systems in the
stationary state (∂/∂t = 0) with S = 0, the surface-
averaged radial current does not vanish exactly due to
the second-order viscosity tensor π2 as shown by

χ′

c

∑

a

ea〈nau
s
a〉 =

∑

a

1

V ′

∂

∂s
[V ′〈(πa2)sζ〉]. (25)

However, it is shown in Ref. 17 that 〈(πa2)sζ〉 is a small

quantity of O(δ3) in axisymmetric systems with up-down
symmetry (as well as in quasi-axisymmetric systems with
stellarator symmetry) where all terms in the toroidal
momentum balance equation given from Eq. (22) van-
ish up to O(δ2). The same argument as above can be
done for other quasi-symmetric systems such as quasi-
poloidally-symmetric and quasi-helically-symmetric sys-
tems if stellarator symmetry holds. On the other hand,
in axisymmetric systems without up-down symmetry,
〈(πa2)sζ〉 = O(δ3) is not guaranteed. Then, the ambipo-

larity condition
∑

a ea〈nau
s
a〉 = 0 is not automatically

satisfied on the second order in δ because of the third-
order radial particle fluxes (c/eaχ

′V ′)∂[V ′〈(πa2)sζ〉]/∂s
driven by the second-order shear viscosity tensor com-
ponents (πa2)

s
ζ [here, it is useful to formally regard the

electric charge as the O(δ−1) quantity27 so that the ra-
dial current due to the third-order radial particle flux is
immediately found to be of the second order]. However,
even in this axisymmetric but up-down asymmetric case,
the second-order radial neoclassical particle fluxes driven
by the CGL tensors still automatically satisfy the am-
bipolarity condition for the radial current up to the first
order.1–3

C. Drift kinetic equation expressed in terms of flux

coordinates

Using the flux coordinates (s, θ, ζ), the drift kinetic
equation, Eq. (6), is rewritten as
(
∂

∂t
+ ṡ

∂

∂s
+ θ̇

∂

∂θ
+ ζ̇

∂

∂ζ
+ U̇

∂

∂U

)
F (s, θ, ζ, U, µ, t)

= C(F ) + S (26)

where

[ṡ, θ̇, ζ̇] =
d

dt
[s, θ, ζ]

=

(
∂

∂t
+ Ẋ · ∇

)
[s(X, t), θ(X, t), ζ(X, t)]. (27)

In Eq. (27), the functions s(X, t), θ(X, t), and ζ(X, t) are
defined by the inverse of X = X(s, θ, ζ, t), where t is gen-
erally included as a parameter. Denoting the Jacobian
for the flux coordinates (s, θ, ζ) by

√
g = det

[
∂(X)

∂(s, θ, ζ)

]
=

1

[∇s · (∇θ ×∇ζ)] , (28)

the conservation law of the phase-space volume, Eq. (5),
and the conservative form of the drift kinetic equation,
Eq. (7), are rewritten as

∂(
√
gD)

∂t
+
∂(
√
gDṡ)

∂s
+
∂(
√
gDθ̇)

∂θ
+
∂(
√
gDζ̇)

∂ζ

+
∂(
√
gDU̇)

∂U
= 0, (29)

and

∂(
√
gDF )

∂t
+
∂(
√
gDF ṡ)

∂s
+
∂(
√
gDF θ̇)

∂θ
+
∂(
√
gDF ζ̇)

∂ζ

+
∂(
√
gDFU̇)

∂U
=

√
gD[C(F ) + S], (30)

respectively.
For an arbitrary function A(s, θ, ζ, U, µ, t) which is in-

dependent of the gyrophase ξ, the phase-space integral is
written as

2π

∫
d3X

∫
dU

∫
dµDA

= 2π

∫
ds

∮
dθ

∮
dζ

√
g

∫
dU

∫
dµDA

=

∫
ds V ′

〈∫
d3vA

〉
, (31)

where

〈· · · 〉 = 1

V ′

∮
dθ

∮
dζ

√
g · · · (32)

represents the flux-surface average and

V ′ =
dV

ds
=

∮
dθ

∮
dζ

√
g (33)
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denotes the radial derivative of the volume V (s) enclosed
within a flux surface labeled by s. We now integrate
Eq. (30) with respect to the coordinates (θ, ζ, U, µ) to
obtain

∂

∂t

(
V ′

〈∫
d3v FA

〉)
+

∂

∂s

(
V ′

〈∫
d3v FA ṡ

〉)

= V ′

〈∫
d3v

(
F Ȧ+ [C(F ) + S]A

)〉
, (34)

where

Ȧ =
dA
dt

=
∂A
∂t

+ ṡ
∂A
∂s

+ θ̇
∂A
∂θ

+ ζ̇
∂A
∂ζ

+ U̇
∂A
∂U

. (35)

The time-evolution equation for the surface-averaged
density

〈∫
d3v F

〉
is derived from Eq. (34) with A = 1 as

∂

∂t

(
V ′

〈∫
d3v F

〉)
+

∂

∂s

(
V ′

〈∫
d3v F ṡ

〉)

= V ′

〈∫
d3v S

〉
. (36)

For the cases of A =W , Eq. (34) reduces to the surface-
averaged energy balance equation,

∂

∂t

(
V ′

〈∫
d3v FW

〉)
+

∂

∂s

(
V ′

〈∫
d3v FW ṡ

〉)

= V ′

〈∫
d3v

(
FẆ + [C(F ) + S]W

)〉
, (37)

where Ẇ is given by Eq. (15). In Eqs. (36) and (37),〈∫
d3v F ṡ

〉
and

〈∫
d3v FW ṡ

〉
represent the radial neo-

classical transport fluxes of particles and energy, respec-
tively, which are regarded as of O(δ2) assuming that the
deviation of F from the local Maxwellian is of O(δ) (see
Sec. II.D). The radial transport fluxes ofO(δ2) are consis-
tent with the so-called transport ordering1 which implies
∂/∂t = O(δ2) in Eqs. (36) and (37).

D. Expansion about a local Maxwellian distribution

The zeroth-order solution F0 of the drift kinetic equa-
tion, Eq. (26), is given by the local Maxwellian,

F0 = n0

(
m

2πT0

)3/2

exp

(
−W
T0

)

= n0

(
m

2πT0

)3/2

exp

(
−E − eΦ

T0

)
, (38)

which annihilates the collision term,

C(F0) = 0. (39)

The total time derivative of F0 is written as

dF0

dt
= F0

[
d lnn0

dt
+
d lnT0
dt

(
mv2

2T0
− 3

2

)
− 1

T0

dW

dt

]

= F0

{
Ẋ · ∇s

[
∂ lnn0

∂s
+

e

T0

∂〈Φ〉
∂s

+
∂ ln T0
∂s

×
(
W

T0
− 3

2

)]
− eUE‖

T0

}
+O(δ2), (40)

where the zeroth-order density n0 and temperature T0
are flux-surface functions independent of (θ, ζ), and their
time dependence follows the transport ordering, ∂/∂t =
O(δ2). The parallel electric field E‖ is given by

E‖ = −b ·
(
∇Φ̃ +

1

c

∂A

∂t

)

= B
〈BE‖〉
〈B2〉 +

(
E‖ −B

〈BE‖〉
〈B2〉

)
, (41)

where Φ̃ = Φ− 〈Φ〉. We now define the first-order distri-
bution f by

F = F0

[
1 +

e

T0

∫ l

dl

(
E‖ −B

〈BE‖〉
〈B2〉

)]
+ f, (42)

where
∫ l
dl represents the integral along the magnetic

field line. Then, substituting Eqs. (41) and (42) into
Eq. (26) yields

df

dt
=
F0

T0

{
V s
gc

[
X1 +X2

(
W

T0
− 5

2

)]
+

eUB

〈B2〉1/2XE

}

+ CL(f) +O(δ2), (43)

where the thermodynamic forces are defined by

X1 = − 1

n0

∂p0
∂s

−e∂Φ
∂s
, X2 = −∂T0

∂s
, XE =

〈BE‖〉
〈B2〉1/2 ,

(44)
and CL(f) represents the linearized collision operator.
Note that all terms explicitly shown on the right-hand
side of Eq. (43) are of the first order in δ. Using the
transport ordering ∂/∂t = O(δ2) and f = O(δ), the left-
hand side of Eq. (43) is written as

df

dt
=

(
V s
gc

∂

∂s
+ V θ

gc

∂

∂θ
+ V ζ

gc

∂

∂ζ
+ U̇

∂

∂U

)
f(s, θ, ζ, U, µ)

+O(δ3)

=
1

D

(
∂(DfV s

gc)

∂s
+
∂(DfV θ

gc)

∂θ
+
∂(DfV ζ

gc)

∂ζ
+
∂(DfU̇)
∂U

)

+O(δ3), (45)

where V s
gc = Ẋ ·∇s, V θ

gc = Ẋ ·∇θ, V ζ
gc = Ẋ ·∇ζ, and D =√

gD. Since V s
gc = O(δ), the radial drift term V s

gc∂f/∂s
in Eq. (45) is of the second order in δ and this gives
rise to global or finite-orbit-width effects on neoclassical
transport.

III. RADIALLY LOCAL APPROXIMATION

Under the radially local approximation made here, the
guiding center equations are written as

dX

dt
= V(rl)

gc ≡ Ub+ (V(rl)
gc )⊥,

dU

dt
= − µ

m
b · ∇B + Ub · ∇b ·V(rl)

gc

dµ

dt
= − 1

B
(V(rl)

gc )⊥ · (mU2b · ∇b+ µ∇B), (46)
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where the second-order part−∇Φ̃−c−1∂A/∂t of the elec-
tric field E is neglected and the guiding center drift veloc-

ity in Eq. (3) is replaced byV
(rl)
gc which has no radial com-

ponent: V
(rl)
gc · ∇s = 0. The component of V

(rl)
gc perpen-

dicular to the magnetic field is denoted by by (V
(rl)
gc )⊥.

We later impose the condition, (V
(rl)
gc )⊥(µ = 0) = 0, in

order to derive appropriate balance equations of particles,
energy, and parallel momentum [see Eqs. (54), (57), and
(61)] by removing improper sources and/or sinks at the
boundary µ = 0 in the velocity-space integral domain.
In Eq. (46), the magnetic moment µ is allowed to vary

in time such that conservation of the kinetic energy of
the particle W = mU2/2 + µB,

dW

dt
= mU

dU

dt
+B

dµ

dt
+ µV(rl)

gc · ∇B = 0, (47)

is satisfied. It might appear that the energy E =W + eΦ
should be conserved instead of W . However, using Φ ≃
〈Φ〉, we find that the difference eΦ between E and W is
approximately constant along the radially local guiding
center orbit and accordingly the conservation of W is
reasonable under the radially local approximation.

We now define (V
(rl)
gc )⊥ by removing the radial com-

ponent from (Vgc)⊥ as

(V(rl)
gc )⊥ = α(Λ)

(
(Vgc)⊥ − (Vgc)⊥ · ∇s

|∇s|2 ∇s
)

= α(Λ)
c

eB
(b×∇s)

( ∇s
|∇s|2 · [mv2‖b · ∇b+ µ∇B]

+ e
dΦ

ds

)

= α(Λ)
c

eB
(b×∇s)

[(
mU2

B
+ µ

) ∇s
|∇s|2 · ∇B

+mU2 4π

B2

dP

ds
+ e

dΦ

ds

]
, (48)

where B∗
‖ and E∗ in the definition of Vgc given by

Eq. (3) are replaced with their lowest-order parts B and
−(dΦ/ds)∇s, respectively, and the factor α(Λ) is intro-

duced to satisfy the condition (V
(rl)
gc )⊥(µ = 0) = 0. Here,

the ratio of the magnetic moment µ to the kinetic energy
W = mU2/2 + µB is used to define the dimensionless
parameter, Λ ≡ µBmax/W , where Bmax is the maximum
value of B on the flux surface. This parameter Λ is a
measure for classifying the guiding center motion into ei-
ther passing or trapped orbit. As Λ increases from 0 and
approaches to 1, the orbit changes from the passing to
the trapped one. Then, we assume that

lim
Λ→+0

α(Λ) = 0 (49)

while α(Λ) = 1 except for an interval, 0 ≤ Λ < Λ0, where
Λ0(≪ 1) is a small positive constant value. For example,
α(Λ) is defined by

α(Λ) =

{
sin(πΛ/2Λ0) (Λ < Λ0)
1 (Λ ≥ Λ0).

(50)

We should note that influences of the magnetic and
E×B drift motions are significant mainly for precession
drift orbits of trapped particles, and that particles in the
region, Λ < Λ0, are passing ones whose orbits almost co-
incide with field lines. Therefore, even if the functional
form of α(Λ) and the value of Λ0 are changed, the ar-
tificial reduction factor α(Λ) for Λ < Λ0 is expected to
cause little change in resultant passing particles’ orbits

except that the limiting condition, limΛ→+0(V
(rl)
gc )⊥ = 0,

is rigorously satisfied. However, this insensitivity to the
form of α(Λ) remains a future subject to be verified by
numerical simulations.

It also should be mentioned that the radially local ap-
proximation described by Eqs. (46) and (48) is indepen-
dent of what poloidal and toroidal angles are chosen for
the flux coordinates. This is a favorable property that
is lost in Ref. 13. We see that the radially local guid-
ing center equations given by Eqs. (46) and the Jacobian
D = B∗

‖/m for the phase-space coordinates (X, U, ξ, µ)

[see Eq. (4)] do not satisfy the conservation law of the
phase-space volume as shown in Eq. (5). This violation
of the phase-space-volume conservation occurs even if B∗

‖

is used instead of B in the denominator on the right-

hand side of Eq. (48) to define (V
(rl)
gc )⊥. In the next sec-

tion, we consider another Jacobian in order to recover
the conservation law although, in this section, a sim-
pler approximate Jacobian D0 ≡ B/m is used. Also, we
hereafter employ (X,W,U, ξ) as phase-space coordinates.
Then, from the Jacobian D0 ≡ B/m for (X, U, ξ, µ) with
µ = (W − 1

2mU
2)/B, the Jacobian for (X,W,U, ξ) is

derived as 1/m, which is constant in the phase space.

Using V
(rl)
gc , dU/dt, and dW/dt = 0 given by Eqs. (46)

with (48) under the radially local approximation, the
drift kinetic equation for the first-order distribution func-
tion f(X,W,U) in the stationary state is written as

∇ · (fV(rl)
gc ) +

∂

∂U

(
f
dU

dt

)

=
F0

T0

{
V s
gc

[
X1 +X2

(
W

T0
− 5

2

)]
+

eUB

〈B2〉1/2XE

}

+ CL(f). (51)

The radial component of the guiding center drift velocity
V s
gc on the right-hand side of Eq. (51) is given by

V s
gc =

c

eB2
[∇s · (b×∇B)]

(
1

2
mU2 +W

)
. (52)

In deriving Eq. (52) from the guiding center drift ve-
locity given in Eq. (3), only the lowest-order terms in
δ is retained and the formula, ∇s · [b × (b · ∇)b] =
∇s · (b × ∇B)/B, obtained from the MHD equilibrium
condition ∇[n0(s)T0(s)] = (4π)−1(∇ × B) × B is used.
The fact that the Jacobian is constant is used in deriv-
ing Eq. (51) which is rewritten by using the flux surface
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coordinates (s, θ, ζ) as

1√
g

[
∂

∂θ
(
√
gfV(rl)

gc · ∇θ) + ∂

∂ζ
(
√
gfV(rl)

gc · ∇ζ)
]

+
∂

∂U

(
f
dU

dt

)

=
F0

T0

{
V s
gc

[
X1 +X2

(
W

T0
− 5

2

)]
+

eUB

〈B2〉1/2XE

}

+ CL(f). (53)

Here, we should note that, in Eq. (53), partial deriva-
tives of the first-order distribution function f are taken
only with respect to the three variables (θ, ζ, U) and that
the radial coordinate s and the kinetic energy W enter
f(s, θ, ζ,W,U) as constant parameters.

Taking the velocity-space integral of Eq. (51) yields the
continuity equation in the stationary state,

∇ · (Γ‖b+ Γ⊥1 + Γ
(rl)
⊥2 ) = 0. (54)

The parallel and perpendicular particle fluxes in Eq. (54)
are defined by

Γ‖ = n0u‖ =

∫
d3v fU,

Γ⊥1 = n0u⊥1 =
n0cX1

eB
∇s× b,

Γ
(rl)
⊥2 = n0u

(rl)
⊥2 =

∫
d3v f(V(rl)

gc )⊥, (55)

where the velocity-space integral is written in terms of
the variables W and U by

∫
d3v =

2π

m

∫ +∞

0

dW

∫ +
√

2W/m

−
√

2W/m

dU. (56)

The diamagnetic flow Γ⊥1 = n0u⊥1 and the parallel flow

Γ‖ are of the first order in δ = ρ/L while Γ
(rl)
⊥2 = n0u

(rl)
⊥2

is of the second order. The collisional particle conserva-
tion law,

∫
d3v CL(f) = 0, is used to obtain Eq. (54).

Also, it should be noted that the boundary condition,

(V
(rl)
gc )⊥(µ = 0) = (V

(rl)
gc )⊥(U = ±

√
2W/m) = 0, is used

for deriving Eq. (54) as well as the energy and parallel
momentum balance equations [see Eqs. (57) and (61)]
from Eq. (51). We find that the flux surface average
of the left-hand side of Eq. (54) automatically vanishes
so that no particle source is required for obtaining the
stationary solution. Thus, the radially local approxima-
tion presented here has self-consistency with neglecting
the radial transport that causes variation in the surface-
averaged particles’ number [see Eq. (36)].

Next, we multiply Eq. (51) with (W − 5T/2) and take
its velocity-space integral to derive

∇ · (q‖b+ q⊥1 + q
(rl)
⊥2 ) = Q, (57)

where the parallel and perpendicular heat fluxes are given
by

q‖ =

∫
d3v f

(
W − 5

2
T

)
U,

q⊥1 =
5

2

p0cX2

eB
∇s× b,

q
(rl)
⊥2 =

∫
d3v f

(
W − 5

2
T

)
(V(rl)

gc )⊥, (58)

and the collisional heat generation is defined by

Q =

∫
d3v CL(f)W. (59)

In Eq. (57), q
(rl)
⊥2 is the second-order flux like Γ

(rl)
⊥2 in

Eq. (54). Taking the flux surface average of Eq. (57), we
obtain

〈Q〉 = 0, (60)

which represents the collisional heat exchange balance
that needs to be satisfied in the stationary state. Un-
equal temperatures Ta0 6= Tb0 can occur in the case of
ma/mb ≪ 1 or ma/mb ≫ 1 where the characteristic
time of the collisional thermal equilibration between the
species a and b is much longer than the 90◦ scattering
times due to like-species collisions characterized by τaa
and τbb. Then, Cab(fa0, fb0) does not vanish even for
the local Maxwellian distribution functions fa0 and fb0
given by Eq. (38) and it describes the above-mentioned
slow collisional thermal equilibration although the lin-
earized collision operator CL used for the Eq. (53) does
not include this equilibrium part of the collision term.
However, the heat generation Qab, which is defined by
Eq. (59) with the linearized operatorCL

ab for collisions be-
tween different species a and b, generally remains nonzero
(even for the case of Ta0 = Tb0). Therefore, Eq. (60),
which is rewritten as 〈Qa〉 ≡ ∑

b6=a 〈Qab〉 = 0 (recall

Qaa ≡ 0), is considered to be the physically reasonable
condition that should be satisfied in the multi-species sta-
tionary state of the radially local model without requiring
additional heat source or sink.
Multiplying Eq. (51) with mU and taking its velocity-

space integral give the parallel momentum balance equa-
tion,

b · [∇p1 +∇ · (π1 + π
(rl)
2 )] = n0eB

〈BE‖〉
〈B2〉 + F‖ (61)

where the first-order pressure p1 and the viscosity tensors

π1 and π
(rl)
2 are defined by

p1 =
2

3

∫
d3v fW,

π1 =

∫
d3v f(mU2 − µB)

(
bb− 1

3
I

)
,

π
(rl)
2 =

∫
d3v f mU

(
(V(rl)

gc )⊥b+ b(V(rl)
gc )⊥

)
, (62)
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and the parallel friction force is given by

F‖ =

∫
d3v CL(f)mU. (63)

The first-order viscosity tensor π1 is written in the form
of the traceless part of the CGL pressure tensor as π1 =
(p‖−p⊥)(bb− 1

3I), where p‖ and p⊥ represent the parallel
and perpendicular pressures, respectively. On the other

hand, the second-order viscosity tensor π
(rl)
2 , which is

given by the correlation between the parallel velocity U

and the perpendicular drift velocity (V
(rl)
gc )⊥ , can not

be written in the CGL form. We now multiply Eq. (61)
with the magnetic-field strength B and take its magnetic-
surface average to derive

〈B · [∇ · (π1 + π
(rl)
2 )]〉 = n0e〈BE‖〉+ 〈BF‖〉, (64)

which is used later to derive an alternative expression for
the neoclassical particle flux.
The radial neoclassical particle flux is written as

Γncl =

〈∫
d3v fV s

gc

〉

=
c

e

〈∇s
B

· [b× (∇p1 +∇ · π1)]

〉

=
c

eχ′

〈
∂x

∂ζ
· (∇p1 +∇ · π1)

〉

− cBζ

eχ′

〈
b

B
· (∇p1 +∇ · π1)

〉
, (65)

where V s
gc = Vgc · ∇s is given by Eq. (52). Derivation of

Eq. (65) uses the following formula,

χ′∇s× b

B
=
∂x

∂ζ
− Bζ

B
b, (66)

and the Boozer coordinates (s, θ, ζ),28 for which the con-
travariant poloidal and toroidal components, Bθ and Bζ ,
of the magnetic field B are flux-surface functions. We see
from Eq. (65) that the neoclassical particle flux is caused
by the spatial gradients of the first-order pressure and
viscosity tensor. It can be shown that the second-order

viscosity tensor π
(rl)
2 defined in Eq. (62) satisfies

〈∇s
B

·
[
b× (∇ · π(rl)

2 )
]〉

= 0 (67)

and
〈
b

B
· (∇ · π(rl)

2 )

〉
= 0. (68)

In deriving Eqs. (67) and (68), it is convenient to write

π
(rl)
2 = A(Bw +wB) with w ≡ (b × ∇s)/B. Then, we

find w · (∇ ·π(rl)
2 ) = w2B · ∇A+A(B · ∇w ·w−w · ∇w ·

B) = w2B · ∇A − A∇s · (∇×w) = ∇ · (A∇s ×w) and

(b/B)·(∇·π(rl)
2 ) = ∇·(Aw)+A(w·∇B·b−b·∇B·w)/B =

∇ · (Aw) +A∇s · (∇×B)/B2 = ∇ · (Aw), which lead to
Eqs. (67) and (68), respectively. Then, using Eqs. (66)–
(68), we also have

〈
∂x

∂ζ
· (∇ · π(rl)

2 )

〉
= 0. (69)

It is found from Eq. (65) and Eqs. (67)–(69) that the

second-order viscosity tensor π
(rl)
2 in the radially local ap-

proximation cannot contribute to the neoclassical trans-
port like the first-order pressure p1 and viscosity tensor
π1.
We now use Eqs. (61) and (68) to rewrite the expres-

sion of the radial neoclassical particle flux in Eq. (65)
as

Γncl =
c

eχ′

〈
∂x

∂ζ
· (∇p1 +∇ · π1)]

〉

− cBζ

eχ′

(
n0e

〈BE‖〉
〈B2〉 +

〈
F‖

B

〉)
. (70)

Here, the first surface-averaged part on the right-hand
of Eq. (70) represents the nonaxisymmetric part of the
neoclassical particle flux,6,19

Γna =
c

eχ′

〈
∂x

∂ζ
· (∇p1 +∇ · π1)]

〉
. (71)

Then, we find from Eqs. (70) and (71) that the radial
electric current is written as

∑

a

eaΓ
ncl
a =

∑

a

eaΓ
na
a , (72)

where the quasineutrality
∑

a na0ea = 0 and the colli-
sional momentum conservation

∑
a F‖a = 0 are used.

For axisymmetric and quasi-axisymmetric systems, we
have

〈
∂p1
∂ζ

〉
=

〈
∂x

∂ζ
· (∇ · π1)

〉
= 0, (73)

from which

Γna = 0, (74)

and

Γncl = −cBζ

eχ′

(
n0e

〈BE‖〉
〈B2〉 +

〈
F‖

B

〉)
(75)

are derived. Here, the quasi-axisymmetry means that
the magnetic field strength B = |B| is independent of
the toroidal angle ζ. For derivation of Eq. (73), the ζ-
independence of B and

√
g = (4π2)−1(dV/ds)〈B2〉/B2

in the Boozer coordinates10 is used [see also Eq. (25) in
Ref. 17]. It is confirmed from Eqs. (72) and (74) that
the solution f of the radially local drift kinetic equation
shown in Eq. (51) or (53) gives the neoclassical particle
fluxes which satisfy the ambipolarity condition,

∑

a

eaΓ
ncl
a = 0, (76)



9

automatically in axisymmetric and quasi-axisymmetric
systems. The intrinsic ambipolarity can be proved in
the same way for all other quasi-symmetric systems
such as quasi-poloidally-symmetric and quasi-helically-
symmetric systems.
It is seen from Eqs. (22)–(25) that the radial current

is closely related to the toroidal viscosity or the radial
transport of the toroidal momentum. As remarked after
Eq. (25), the ambipolarity condition is not guaranteed
on the second order in δ for axisymmetric systems with-
out up-down symmetry (as well as quasi-axisymmetric
systems without stellarator symmetry) because of the
component (πa2)

s
ζ of the second-order non-CGL viscosity

tensor. We also note that the radial neoclassical particle
flux defined by Eq. (65) is the second-order flux driven
by the first-order CGL tensor which becomes a dominant
part for nonaxisymmetric systems although it does not
contain the third-order flux due to the second-order ten-
sor. Therefore, Eq. (76) should be interpreted to imply
that the intrinsic ambipolarity condition for the axisym-
metric case can be correctly treated only up to the first
order by the present radially local approximation. On
the other hand, the second-order neoclassical radial flux
〈(πa2)sζ〉 of the toroidal momentum in the axisymmetric
but up-down asymmetric case can also be evaluated using
the solution f of the radially local drift kinetic equation
even without resort to the radially global model. This
can be done by substituting the solution f into the for-
mula for the toroidal momentum transport flux given by
Eq. (18) in Ref. 17. [It is confirmed from Eqs. (11) and
(13) in Ref. 29 that, if using the definition of π2 given by
Eq. (19) in the present work to evaluate 〈(πa2)sζ〉, only a

part of the result from Eq. (18) in Ref. 17 is reproduced.]

IV. ENTROPY PRODUCTION RATE AND ONSAGER

SYMMETRY ASSOCIATED WITH NEOCLASSICAL

TRANSPORT EQUATIONS

The neoclassical radial particle flux Γncl, heat flux qncl,
and parallel electric current JE = 〈BJ‖〉/〈B2〉1/2 are de-
fined in terms of the solution f of Eq. (51) or (53) by

Γncl
a =

〈∫
d3v faV

s
gc a

〉
,

qncla =

〈∫
d3v faV

s
gc a

(
W − 5

2
Ta

)〉
,

JE = 〈B2〉−1/2
∑

a

ea

〈∫
d3v faU

〉
, (77)

where the subscript a denotes the particle species. The
linearized collision operator in Eq. (51) for the species a is
defined in terms of the bilinear operator Cab for collisions
between the species a and b by

∑

b

[Cab(fa, Fb0) + Cab(Fa0, fb)]. (78)

Here, CT
ab(fa) ≡ Cab(fa, Fb0) and C

F
ab(fb) ≡ Cab(Fa0, fb)

are called test- and field-particle collision operators, re-
spectively, and they satisfy the adjointness relations,30,31

∫
d3v

fa
Fa0

CT
ab(ga) =

∫
d3v

ga
Fa0

CT
ab(fa),

Ta

∫
d3v

fa
Fa0

CF
ab(gb) = Tb

∫
d3v

gb
Fb0

CF
ba(fa), (79)

and Boltzmann’s H-theorem,30,31

Ta

∫
d3v

fa
Fa0

[CT
ab(fa) + CF

ab(fb)]

+ Tb

∫
d3v

fb
Fb0

[CT
ba(fb) + CF

ba(fa)] ≤ 0. (80)

Strictly speaking, the adjointness relations and the H-
theorem are rigorously satisfied by the linearized Lan-
dau collision operator only for the case of Ta = Tb al-
though they are still approximately valid even for Ta 6= Tb
when (ma/mb)

1/2 or (mb/ma)
1/2(1 − Tb/Ta) are small

enough.30

Since the drift kinetic equations for different particle
species are coupled with each other due to the field parti-
cle collision operators, fa depends not only on thermody-
namic forces (Xa1, Xa2, XE) but also on those for b 6= a,
(Xb1, Xb2). Accordingly, we find that Γncl

a , qncla , and JE in
Eq. (77) are related to the thermodynamic forces through
the neoclassical transport equations which are written as

Γncl
a =

∑

b

(L11
abXb1 + L12

abXb2) + L1
aEXE ,

qncla /Ta =
∑

b

(L21
abXb1 + L22

abXb2) + L2
aEXE ,

JE =
∑

b

(L1
EbXb1 + L2

EbXb2) + LEEXE . (81)

Here, the neoclassical transport coefficients
(L11

ab, L
12
ab, · · · ) are regarded as functions of the variables

[Es(≡ −dΦ/ds), ∇s · ∇B, ∇s · (b · ∇b)] which charac-

terize the perpendicular guiding center velocity (V
(rl)
gc )⊥

defined in Eq. (48).
We here examine the Onsager symmetry of the neo-

classical transport coefficients. In order to prove the
Onsager symmetry, the adjointness relations written in
Eq. (79) and the phase-space-volume conservation along
the collisionless guiding center orbit are required as
shown in Refs. 19 and 29. However, in the radially
local model based on Eq. (51), the latter condition

∇·V(rl)
gc +∂(dU/dt)/∂U = 0 is broken so that the Onsager

symmetry is not satisfied.
As noted before Eq. (51), the Jacobian for the phase-

space coordinates (X,W,U, ξ) is given by 1/m. Here, we
consider a modified Jacobian,

DW = [1 + d∗(X,W,U)]/m, (82)

which differs from the one mentioned above by the correc-
tion term d∗ of O(δ) [see Eq. (84) below]. This term d∗ is
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determined by assuming that the Jacobian DW satisfies
the conservation law of the phase-space volume element
written as

∇ · (DWV(rl)
gc ) +

∂

∂U

(
DW

dU

dt

)
= 0, (83)

where V
(rl)
gc and dU/dt are given by Eqs. (46) and (48).

We can rewrite Eq. (83) as
(
V(rl)

gc · ∇θ ∂
∂θ

+V(rl)
gc · ∇ζ ∂

∂ζ
+
dU

dt

∂

∂U

)
lnDW

=

(
V(rl)

gc · ∇θ ∂
∂θ

+V(rl)
gc · ∇ζ ∂

∂ζ
+
dU

dt

∂

∂U

)
ln(1 + d∗)

= −∇ ·V(rl)
gc − ∂

∂U

(
dU

dt

)
. (84)

Noting that the last line of Eq. (84) is of O(δ), we can
take the correction term d∗ as a small quantity of O(δ).
The left-hand side of Eq. (84) represents the derivative
of lnDW along the radially local guiding center orbit la-
beled by the constant parameters (s,W ). Assuming that
the guiding center orbit ergodically covers the (θ, ζ, U)
space, DW = (1 + d∗)/m is determined by Eq. (84) ex-
cept for a factor that is an arbitrary function of (s,W ).
In order to uniquely specify DW = (1+d∗)/m, we impose
another constraint,

〈∫ +
√

2W/m

−
√

2W/m

dU d∗

〉
= 0, (85)

where 〈· · · 〉 represents the flux-surface average defined in
Eq. (32). Owing to the condition in Eq. (85), d∗ is given
as a small correction and it does not affect the surface-
averaged velocity integral of the equilibrium distribution
function F0 as shown by

〈∫
d3v (1 + d∗)F0

〉
=

〈∫
d3v F0

〉
= n0, (86)

where
∫
d3v is given by Eq. (56) and F0 is the local

Maxwellian defined in Eq. (38) with the equilibrium den-
sity n0 and temperature T0 given as flux-surface func-
tions.
We next define another distribution function f∗ by

f∗ ≡ f

1 + d∗
, (87)

and use Eq. (83) to rewrite Eq. (51) in terms of f∗ as

Vf∗ =
F0

T0

{
V s
gc

[
X1 +X2

(
W

T0
− 5

2

)]
+

eUB

〈B2〉1/2XE

}

+ CL(f∗), (88)

where the differential operator V is defined by

V ≡ (1 + d∗)

(
V(rl)

gc · ∇+
dU

dt

∂

∂U

)
. (89)

The collision term CL(f) in Eq. (51) is replaced by
CL(f∗) in Eq. (88) where the deviation of CL(f∗) from
CL(f) is of O(δ2) and it is neglected. It is shown from
Eq. (83) that the differential operator V satisfies the an-
tisymmetry relation,

〈∫
d3v αVβ

〉
= −

〈∫
d3v βVα

〉
, (90)

where α and β are arbitrary smooth functions on the
phase space.
Replacing f with f∗ in Eq. (77), we can define modified

transport fluxes, Γncl
∗a , q

ncl
∗a , and J∗E , the values of which

agree with those of Γncl
a , qncla , and JE , respectively, to the

lowest order in δ because f∗ = f [1 + O(δ)]. Then, sub-
stituting the solution f∗ of Eq. (88) into the definitions
of the modified transport fluxes, we can derive the neo-
classical transport equations relating (Γncl

∗a , q
ncl
∗a , J∗E) to

(Xb1, Xb2, XE). These transport equations take the same
forms as those in Eq. (81), and we use (L11

∗ab, L
12
∗ab, · · · ) to

represent the modified transport coefficients which cor-
respond to (L11

ab, L
12
ab, · · · ) in Eq. (81), respectively. It is

shown in the same way as in Sec. III that no additional
sources and/or sinks are required to obtain stationary
particle and energy balances from Eq. (88)
We now multiply Eq. (88) for particle species a with

Taf∗a/Fa0 and take its velocity-space integral, flux-
surface average, and summation over species. Then, we
obtain
∑

a

(
TaΓ

ncl
∗aXa1 + qncl∗a Xa2

)
+ J∗EXE

= −
∑

a,b

Ta

〈∫
d3v

f∗a
Fa0

[
CT

ab(f∗a) + CF
ab(f∗b)

]〉
≥ 0, (91)

where the inequality is due to the H-theorem given in
Eq. (80). Equation (91) means that the neoclassical
transport process is subject to the second law of ther-
modynamics: the summation of products between the
transport fluxes and forces equals the entropy produc-
tion rate expressed in terms of the linearized collision
operator, which is positive definite.
Since the differential operator V and the linearized

collision operator CL satisfy the antisymmetry relation
in Eq. (90) and the adjointness relations in Eq. (79),
respectively, we can use the same procedures as in
Ref. 29 to prove that the modified transport coefficients
(L11

∗ab, L
12
∗ab, · · · ) obey the Onsager symmetry relations

written as

Lij
∗ab(β) = Lji

∗ba(−β) (i, j = 1, 2),

Li
∗aE(β) = −Li

∗Ea(−β) (i = 1, 2),

L∗EE(β) = L∗EE(−β), (92)

where β ≡ [Es, ∇s · ∇B, ∇s · (b · ∇b)] represent the
variables associated with the perpendicular guiding cen-

ter velocity (V
(rl)
gc )⊥ as explained after Eq. (81). Note

that the change from β to −β corresponds to turning

(V
(rl)
gc )⊥ in the opposite direction.
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The positive definiteness and the Onsager symmetry
shown in Eqs. (91) and (92) for the neoclassical trans-
port defined by the solution f∗ of Eq. (88) do not hold for
the neoclassical fluxes (Γncl

a , qncla , JE) and the transport
coefficients (L11

ab, L
12
ab, · · · ) in Eq. (81) derived from the

solution f of Eq. (51). On the other hand, we also find
that Γncl

∗a defined by f∗ is not written in the same form
as in Eq. (70) because the parallel momentum balance
equation derived from Eq. (88) cannot be used exactly
in the same way as in deriving Eq. (70) from Eq. (65).
Thus, the intrinsic ambipolarity condition for axisym-
metric and quasi-symmetric systems is slightly broken
by the modified neoclassical particle fluxes Γncl

∗a obtained
using (L11

∗ab, L
12
∗ab, L

1
∗aE) while it is rigorously satisfied by

Γncl
a using (L11

ab, L
12
ab, L

1
aE) as shown in Sec. III.

By the way, it can be shown in the same way as in
Ref. 29 that, for axisymmetric systems with up-down
symmetry and helical systems with stellarator symmetry,
the neoclassical transport coefficients (L11

∗ab, L
12
∗ab, · · · )

satisfy the restricted forms of the Onsager symmetry re-
lations,

Lij
∗ab(β) = Lij

∗ab(−β) = Lji
∗ba(β) (i, j = 1, 2),

Li
∗aE(β) = −Li

∗aE(−β) = Li
∗Ea(β) (i = 1, 2),

L∗EE(β) = L∗EE(−β). (93)

V. CONCLUSIONS

In this paper, a novel radially local approximation of
the drift kinetic equation is presented. The approximated
guiding center equations, which are shown in Eq. (46),
have no radial drift velocity component but they main-
tain the E×B drift and the component of the magnetic
drift tangential to the flux surface. In addition, they
conserve the particle kinetic energy at the expense of
the conservation of the magnetic moment. Under this
approximation, a new drift kinetic equation is given by
Eq. (51) in the conservative form, which has favorable
properties for numerical simulation that any additional
terms for particle and energy sources are unnecessary for
obtaining stationary solutions. Also, it is shown to satisfy
the intrinsic ambipolarity condition for neoclassical par-
ticle fluxes in axisymmetric and quasi-symmetric toroidal
systems. Another radially local drift kinetic equation is
presented in Eq. (88), the solution of which equals that
of Eq. (46) to the leading order in the expansion with
respect to the drift ordering parameter δ defined by the
ratio of the gyroradius to the equilibrium scale length.
The positive definiteness of the entropy production due
to the neoclassical transport fluxes and the Onsager sym-
metry of the neoclassical transport coefficients are rigor-
ously guaranteed by the solution of Eq. (88) although it
does not exactly assure the intrinsic ambipolarity condi-
tion for neoclassical particle fluxes in axisymmetric and
quasi-symmetric systems. Thus, Eqs. (51) and (88) each
have favorable properties which are weakly broken in the
other equation. To the lowest order in δ, the neoclassical

transport fluxes derived from both solutions of Eqs. (51)
and (88) have the same values as each other, and no
additional sources and/or sinks are required for those so-
lutions to satisfy stationary particle and energy balances
consistently. Therefore, both drift kinetic equations are
considered to be practically useful for numerically evalu-
ating the neoclassical transport fluxes with including ef-
fects of the E×B and magnetic drift motions tangential
to the flux surface in the framework of the radially local
approximation. Numerical applications of the present
local model are in progress and their results will be re-
ported elsewhere.
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