689 research outputs found

    Structural behavior of uranium dioxide under pressure by LSDA+U calculations

    Full text link
    The structural behavior of UO2 under high pressure up to 300GPa has been studied by first-principles calculations with LSDA+U approximation. The results show that a pressure-induced structural transition to the cotunnite-type (orthorhombic Pnma) phase occurs at 38GPa. It agrees well with the experimentally observed ~42 GPa. An isostructural transition following that is also predicted to take place from 80 to 130GPa, which has not yet been observed in experiments. Further high compression beyond 226GPa will result in a metallic and paramagnetic transition. It corresponds to a volume of 90A^3 per cell, in good agreement with a previous theoretical analysis in the reduction of volume required to delocalize 5f states.Comment: 10 pages, 8 figure

    Direct Photons at RHIC

    Full text link
    The PHENIX experiment has measured direct photons in sNN=200\sqrt{s_{NN}} = 200 GeV Au+Au collisions and p+p collisions. The fraction of photons due to direct production in Au+Au collisions is shown as a function of pTp_T and centrality. This measurement is compared with expectation from pQCD calculations. Other possible sources of direct photons are discussed.Comment: 7 pages, 5 figures, presented at Hot Quarks 2004, Taos, N

    Invariants of Triangular Lie Algebras

    Full text link
    Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants ('generalized Casimir operators') are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of [J. Phys. A: Math. Gen., 2006, V.39, 5749; math-ph/0602046], developed further in [J. Phys. A: Math. Theor., 2007, V.40, 113; math-ph/0606045], is used to determine the invariants. A conjecture of [J. Phys. A: Math. Gen., 2001, V.34, 9085], concerning the number of independent invariants and their form, is corroborated.Comment: LaTeX2e, 16 pages; misprints are corrected, some proofs are extende

    THERMUS -- A Thermal Model Package for ROOT

    Full text link
    THERMUS is a package of C++ classes and functions allowing statistical-thermal model analyses of particle production in relativistic heavy-ion collisions to be performed within the ROOT framework of analysis. Calculations are possible within three statistical ensembles; a grand-canonical treatment of the conserved charges B, S and Q, a fully canonical treatment of the conserved charges, and a mixed-canonical ensemble combining a canonical treatment of strangeness with a grand-canonical treatment of baryon number and electric charge. THERMUS allows for the assignment of decay chains and detector efficiencies specific to each particle yield, which enables sensible fitting of model parameters to experimental data.Comment: to be published in Computer Physics Communication
    corecore