335 research outputs found
Large time behavior of the vorticity of two‐dimensional flow and its application to vortex formation
We consider the Cauchy problem for the two-dimensional vorticity equation. We show that the solution ω behaves like a constant multiple of the Gauss kernel having the same total vorticity as time tends to infinity. No particular structure of initial data ω = ω(x,0) is assumed except the restriction that 0 the Reynolds number R = ſlω0 ldx/v is small, where v is the kinematic viscosity. Applying a time-dependent scale transformation, we show a stability of Burgers' vortex, which physically implies formation of a concentrated vortex
Soft X-ray Magnetic Circular Dichroism of c(2x2) CuMn Ordered Surface Alloy
Mn 2p soft X-ray absorption (XAS) spectroscopy excited with circularly
polarized synchrotron radiation has been applied to a new class of material,
c(2x2)CuMn/Cu(001) two-dimensional ordered surface alloy. A significant X-ray
magnetic circular dichroism (XMCD) signal has been clearly observed at T=25K,
indicating the existence of the ferromagnetic state under the external magnetic
field of 1.4 Tesla. The lineshape analyses of the XAS and XMCD spectra clearly
show that the Mn 3d state is rather localized and has a high spin magnetic
moment due to its half-filled character.Comment: REVTeX, 3pages, 3figures. To appear in Jpn. J. Appl. Phys. Vol.42
(2003
Exotic radiation from a photonic crystal excited by an ultra-relativistic electron beam
We report the observation of an exotic radiation (unconventional
Smith-Purcell radiation) from a one-dimensional photonic crystal. The physical
origin of the exotic radiation is direct excitation of the photonic bands by an
ultra-relativistic electron beam. The spectrum of the exotic radiation follows
photonic bands of a certain parity, in striking contrast to the conventional
Smith-Purcell radiation, which shows solely a linear dispersion. Key
ingredients for the observation are the facts that the electron beam is in an
ultra-relativistic region and that the photonic crystal is finite. The origin
of the radiation was identified by comparison of experimental and theoretical
results.Comment: 4 pages, 5 figure
Self-trapped states and the related luminescence in PbCl crystals
We have comprehensively investigated localized states of photoinduced
electron-hole pairs with electron-spin-resonance technique and
photoluminescence (PL) in a wide temperature range of 5-200 K. At low
temperatures below 70 K, holes localize on Pb ions and form
self-trapping hole centers of Pb. The holes transfer to other trapping
centers above 70 K. On the other hand, electrons localize on two Pb ions
at higher than 50 K and form self-trapping electron centers of Pb.
From the thermal stability of the localized states and PL, we clarify that
blue-green PL band at 2.50 eV is closely related to the self-trapped holes.Comment: 8 pages (10 figures), ReVTEX; removal of one figure, Fig. 3 in the
version
Search for Anisotropy of Ultra-High Energy Cosmic Rays with the Telescope Array Experiment
We study the anisotropy of Ultra-High Energy Cosmic Ray (UHECR) events
collected by the Telescope Array (TA) detector in the first 40 months of
operation. Following earlier studies, we examine event sets with energy
thresholds of 10 EeV, 40 EeV, and 57 EeV. We find that the distributions of the
events in right ascension and declination are compatible with an isotropic
distribution in all three sets. We then compare with previously reported
clustering of the UHECR events at small angular scales. No significant
clustering is found in the TA data. We then check the events with E>57 EeV for
correlations with nearby active galactic nuclei. No significant correlation is
found. Finally, we examine all three sets for correlations with the large-scale
structure of the Universe. We find that the two higher-energy sets are
compatible with both an isotropic distribution and the hypothesis that UHECR
sources follow the matter distribution of the Universe (the LSS hypothesis),
while the event set with E>10 EeV is compatible with isotropy and is not
compatible with the LSS hypothesis at 95% CL unless large deflection angles are
also assumed. We show that accounting for UHECR deflections in a realistic
model of the Galactic magnetic field can make this set compatible with the LSS
hypothesis.Comment: 10 pages, 9 figure
Horizontal Transmission of Candida albicans and Evidence of a Vaccine Response in Mice Colonized with the Fungus
Disseminated candidiasis is the third leading nosocomial blood stream infection in the United States and is often fatal. We previously showed that disseminated candidiasis was preventable in normal mice by immunization with either a glycopeptide or a peptide synthetic vaccine, both of which were Candida albicans cell wall derived. A weakness of these studies is that, unlike humans, mice do not have a C. albicans GI flora and they lack Candida serum antibodies. We examined the influence of C. albicans GI tract colonization and serum antibodies on mouse vaccination responses to the peptide, Fba, derived from fructose bisphosphate aldolase which has cytosolic and cell wall distributions in the fungus. We evaluated the effect of live C. albicans in drinking water and antimicrobial agents on establishment of Candida colonization of the mouse GI tract. Body mass, C. albicans in feces, and fungal-specific serum antibodies were monitored longitudinally. Unexpectedly, C. albicans colonization occurred in mice that received only antibiotics in their drinking water, provided that the mice were housed in the same room as intentionally colonized mice. The fungal strain in unintentionally colonized mice appeared identical to the strain used for intentional GI-tract colonization. This is the first report of horizontal transmission and spontaneous C. albicans colonization in mice. Importantly, many Candida-colonized mice developed serum fungal-specific antibodies. Despite the GI-tract colonization and presence of serum antibodies, the animals made antibodies in response to the Fba immunogen. This mouse model has potential for elucidating C. albicans horizontal transmission and for exploring factors that induce host defense against disseminated candidiasis. Furthermore, a combined protracted GI-tract colonization with Candida and the possibility of serum antibody responses to the presence of the fungus makes this an attractive mouse model for testing the efficacy of vaccines designed to prevent human disseminated candidiasis
- …