5,514 research outputs found
A 3-D Track-Finding Processor for the CMS Level-1 Muon Trigger
We report on the design and test results of a prototype processor for the CMS
Level-1 trigger that performs 3-D track reconstruction and measurement from
data recorded by the cathode strip chambers of the endcap muon system. The
tracking algorithms are written in C++ using a class library we developed that
facilitates automatic conversion to Verilog. The code is synthesized into
firmware for field-programmable gate-arrays from the Xilinx Virtex-II series. A
second-generation prototype has been developed and is currently under test. It
performs regional track-finding in a 60 degree azimuthal sector and accepts 3
GB/s of input data synchronously with the 40 MHz beam crossing frequency. The
latency of the track-finding algorithms is expected to be 250 ns, including
geometrical alignment correction of incoming track segments and a final
momentum assignment based on the muon trajectory in the non-uniform magnetic
field in the CMS endcaps.Comment: 7 pages, 5 figures, proceedings for the conference on Computing in
High Energy and Nuclear Physics, March 24-28 2003, La Jolla, Californi
Electromagnetic on-aircraft antenna radiation in the presence of composite plates
The UTD-based NEWAIR3 code is modified such that it can model modern aircraft by composite plates. One good model of conductor-backed composites is the impedance boundary condition where the composites are replaced by surfaces with complex impedances. This impedance-plate model is then used to model the composite plates in the NEWAIR3 code. In most applications, the aircraft distorts the desired radiation pattern of the antenna. However, test examples conducted in this report have shown that the undesired scattered fields are minimized if the right impedance values are chosen for the surface impedance plates
An Extended Huckel Theory based Atomistic Model for Graphene Nanoelectronics
An atomistic model based on the spin-restricted extended Huckel theory (EHT)
is presented for simulating electronic structure and I-V characteristics of
graphene devices. The model is applied to zigzag and armchair graphene
nano-ribbons (GNR) with and without hydrogen passivation, as well as for
bilayer graphene. Further calculations are presented for electric fields in the
nano-ribbon width direction and in the bilayer direction to show electronic
structure modification. Finally, the EHT Hamiltonian and NEGF (Nonequilibrium
Green's function) formalism are used for a paramagnetic zigzag GNR to show
2e2/h quantum conductance.Comment: 5 pages, 8 figure
Nonvolatile memory with molecule-engineered tunneling barriers
We report a novel field-sensitive tunneling barrier by embedding C60 in SiO2
for nonvolatile memory applications. C60 is a better choice than ultra-small
nanocrystals due to its monodispersion. Moreover, C60 provides accessible
energy levels to prompt resonant tunneling through SiO2 at high fields.
However, this process is quenched at low fields due to HOMO-LUMO gap and large
charging energy of C60. Furthermore, we demonstrate an improvement of more than
an order of magnitude in retention to program/erase time ratio for a metal
nanocrystal memory. This shows promise of engineering tunnel dielectrics by
integrating molecules in the future hybrid molecular-silicon electronics.Comment: to appear in Applied Physics Letter
The effects of matter density uncertainties on neutrino oscillations in the Earth
We compare three different methods to evaluate uncertainties in the Earth's
matter density profile, which are relevant to long baseline experiments, such
as neutrino factories.Comment: 3 pages, 1 figure. Talk given at the NuFact'02 Workshop, London, 1-6
July, 200
Directed evolution of cytochrome c for carbon–silicon bond formation: Bringing silicon to life
Organic compounds containing silicon are important for a number of applications, from polymers to semiconductors. The catalysts used for creating carbon-silicon bonds, however, often require expensive trace metals or have limited lifetimes. Borrowing from the ability of some metallo-enzymes to catalyze other rare carbene insertion reactions, Kan et al. used heme proteins to form carbon-silicon bonds across a range of conditions and substrates (see the Perspective by Klare and Oestreich). Directed evolution experiments using cytochrome c from Rhodothermus marinus improved the reaction to be 15 times more efficient than industrial catalysts
Plasma-Induced Frequency Chirp of Intense Femtosecond Lasers and Its Role in Shaping High-Order Harmonic Spectral Lines
We investigate the self-phase modulation of intense femtosecond laser pulses
propagating in an ionizing gas and its effects on collective properties of
high-order harmonics generated in the medium. Plasmas produced in the medium
are shown to induce a positive frequency chirp on the leading edge of the
propagating laser pulse, which subsequently drives high harmonics to become
positively chirped. In certain parameter regimes, the plasma-induced positive
chirp can help to generate sharply peaked high harmonics, by compensating for
the dynamically-induced negative chirp that is caused by the steep intensity
profile of intense short laser pulses.Comment: 5 pages, 5 figure
Coexistence of antiferromagnetic order and unconventional superconductivity in heavy fermion compounds CeRh_{1-x}Ir_xIn_5: nuclear quadrupole resonance studies
We present a systematic ^{115}In NQR study on the heavy fermion compounds
CeRh_{1-x}Ir_xIn_5 (x=0.25, 0.35, 0.45, 0.5, 0.55 and 0.75). The results
provide strong evidence for the microscopic coexistence of antiferromagnetic
(AF) order and superconductivity (SC) in the range of 0.35 \leq x \leq 0.55.
Specifically, for x=0.5, T_N is observed at 3 K with a subsequent onset of
superconductivity at T_c=0.9 K. T_c reaches a maximum (0.94 K) at x=0.45 where
T_N is found to be the highest (4.0 K). Detailed analysis of the measured
spectra indicate that the same electrons participate in both SC and AF order.
The nuclear spin-lattice relaxation rate 1/T_1 shows a broad peak at T_N and
follows a T^3 variation below T_c, the latter property indicating
unconventional SC as in CeIrIn_5 (T_c=0.4 K). We further find that, in the
coexistence region, the T^3 dependence of 1/T_1 is replaced by a T-linear
variation below T\sim 0.4 K, with the value \frac{(T_1)_{T_c}}{(T_1)_{low-T}}
increasing with decreasing x, likely due to low-lying magnetic excitations
associated with the coexisting magnetism.Comment: 20 pages, 14 figure
Structure of BSCCO supermodulation from ab initio calculations
We present results of density functional theory (DFT) calculation of the
structural supermodulation in BSCCO-2212 structure, and show that the
supermodulation is indeed a spontaneous symmetry breaking of the nominal
crystal symmetry, rather than a phenomenon driven by interstitial O dopants.
The structure obtained is in excellent quantitative agreement with recent x-ray
studies, and reproduces several qualitative aspects of scanning tunnelling
microscopy (STM) experiments as well. The primary structural modulation
affecting the CuO_2 plane is found to be a buckling wave of tilted CuO_5
half-octahedra, with maximum tilt angle near the phase of the supermodulation
where recent STM experiments have discovered an enhancement of the
superconducting gap. We argue that the tilting of the half-octahedra and
concommitant planar buckling are directly modulating the superconducting pair
interaction.Comment: 4 pages, 3 figure
- …