239 research outputs found

    Activated Random Walkers: Facts, Conjectures and Challenges

    Get PDF
    We study a particle system with hopping (random walk) dynamics on the integer lattice Zd\mathbb Z^d. The particles can exist in two states, active or inactive (sleeping); only the former can hop. The dynamics conserves the number of particles; there is no limit on the number of particles at a given site. Isolated active particles fall asleep at rate λ>0\lambda > 0, and then remain asleep until joined by another particle at the same site. The state in which all particles are inactive is absorbing. Whether activity continues at long times depends on the relation between the particle density ζ\zeta and the sleeping rate λ\lambda. We discuss the general case, and then, for the one-dimensional totally asymmetric case, study the phase transition between an active phase (for sufficiently large particle densities and/or small λ\lambda) and an absorbing one. We also present arguments regarding the asymptotic mean hopping velocity in the active phase, the rate of fixation in the absorbing phase, and survival of the infinite system at criticality. Using mean-field theory and Monte Carlo simulation, we locate the phase boundary. The phase transition appears to be continuous in both the symmetric and asymmetric versions of the process, but the critical behavior is very different. The former case is characterized by simple integer or rational values for critical exponents (β=1\beta = 1, for example), and the phase diagram is in accord with the prediction of mean-field theory. We present evidence that the symmetric version belongs to the universality class of conserved stochastic sandpiles, also known as conserved directed percolation. Simulations also reveal an interesting transient phenomenon of damped oscillations in the activity density

    Monitoring van groene burgerinitiatieven : analyse van de resultaten van een pilot en nulmeting in vier gemeenten

    Get PDF
    To inform the evaluation of the Nature Pact (Natuurpact) and the Assessment of the Dutch Human Environment (Balans van de Leefomgeving), PBL Netherlands Environmental Assessment Agency needs a quantitative measure of the size and scope of green citizens’ initiatives and their impact. The need for this information reflects the ambition of many government authorities to bring the wider community, including individuals, into closer contact with nature and involve them more in nature policy. This report describes the results of a baseline assessment and pilot study to test the newly developed methodology for monitoring green citizens’ initiatives. Besides the results, the report includes several analyses based on the data and presents the main findings

    Evolutionary phase space in driven elliptical billiards

    Full text link
    We perform the first long-time exploration of the classical dynamics of a driven billiard with a four dimensional phase space. With increasing velocity of the ensemble we observe an evolution from a large chaotic sea with stickiness due to regular islands to thin chaotic channels with diffusive motion leading to Fermi acceleration. As a surprising consequence, we encounter a crossover, which is not parameter induced but rather occurs dynamically, from amplitude dependent tunable subdiffusion to universal normal diffusion in momentum space. In the high velocity case we observe particle focusing in phase space.Comment: 5 pages, 4 figure

    Intraspecific variability of popcorn S7 lines for phosphorus efficiency in the soil.

    Get PDF
    The expansion of agriculture, coupled with the need for sustainable cropping, is one of the greatest challenges of the scientific community working on the generation of new cultivars adapted to abiotic stress conditions. The aim of this study was to evaluate the variability of popcorn lines as to responsiveness and efficiency in phosphorus use, as a first step towards the implementation of a breeding program interested in the practice of sustainable agriculture. Twenty-five popcorn lines were evaluated in two locations with different phosphorus levels in the soil, using a randomized block design. The following traits were measured: plant height, ear height, female flowering date, male flowering date, male-female flowering interval, ear diameter, ear length, 100-grain weight, grain yield, popping expansion, and expanded popcorn volume per hectare. A combined analysis of variance and test of means were performed, and the lines were classified as to their phosphorus use efficiency, according to their production performance in the different environments. The genetic diversity between the lines was estimated by Tocher?s and UPGMA clustering methods, using generalized Mahalanobis distance. Lines L59, P7, P2, P3, P4, P8, P10, P9, L66, L70, L69, and P5 were efficient and responsive, whereas lines L75, L80, L61, L77, L63, L65, P1, L54, L53, L88, and L71 were inefficient and nonresponsive. Genetic variability was greater in the environments with low phosphorus in the soil, suggesting that the selection pressure exerted in the stressing environment is a decisive factor to obtain a higher expression of variability

    Genetic effects on the efficiency and responsiveness to phosphorus use in popcorn as estimated by diallel analysis.

    Get PDF
    Agricultural expansion and the need for sustainable cultivation are challenges faced by researchers involved in the generation of new cultivars that can adapt to abiotic stress. Knowledge of the genetic effects of characteristics related to efficiency and responsiveness to phosphorus use must be considered when implementing methods to obtain better genotypes. The aim of this study was to characterize and select popcorn hybrids based on their efficiency and responsiveness to phosphorus use, and estimate their combining abilities and genetic effects via diallel analysis to implement improvement programs for sustainable agriculture. Eight contrasting inbred lines were used to obtain simple hybrids for diallel analysis. Twenty-eight diallelic hybrids plus the popcorn parental lines were evaluated at two different sites under two contrasting environments for soil phosphorus availability (6Ă—6 lattice design). Grain yield, popping expansion, and volume of expanded popcorn per hectare were measured. A combined analysis of variance and a test of means were performed. The classification and utilization of the phosphorus use efficiency index, according to the grain yield performance of the hybrids under contrasting environments, was considered. Through model 2 of the Griffing?s diallel analysis method, the general and specific combining abilities were estimated, along with their environmental interactions. The best strategy to obtain genotypes that are efficient and responsive to phosphorus involves exploring popcorn hybrids using genitors that result in the accumulation of additive genes that promote popping expansion. Hybrids P7Ă—L80, P7Ă—L59, P7Ă—L76, and P6Ă—L80 presented promising results and may be evaluated as cultivation options in phosphorus-deficient soils

    Pair contact process with a particle source

    Full text link
    We study the phase diagram and critical behavior of the one-dimensional pair contact process (PCP) with a particle source using cluster approximations and extensive simulations. The source creates isolated particles only, not pairs, and so couples not to the order parameter (the pair density) but to a non-ordering field, whose state influences the evolution of the order parameter. While the critical point p_c shows a singular dependence on the source intensity, the critical exponents appear to be unaffected by the presence of the source, except possibly for a small change in beta. In the course of our study we obtain high-precision values for the critical exponents of the standard PCP, confirming directed-percolation-like scaling.Comment: 15 pages, 9 figure

    The non-equilibrium phase transition of the pair-contact process with diffusion

    Full text link
    The pair-contact process 2A->3A, 2A->0 with diffusion of individual particles is a simple branching-annihilation processes which exhibits a phase transition from an active into an absorbing phase with an unusual type of critical behaviour which had not been seen before. Although the model has attracted considerable interest during the past few years it is not yet clear how its critical behaviour can be characterized and to what extent the diffusive pair-contact process represents an independent universality class. Recent research is reviewed and some standing open questions are outlined.Comment: Latexe2e, 53 pp, with IOP macros, some details adde

    Universal finite-size scaling amplitudes in anisotropic scaling

    Full text link
    Phenomenological scaling arguments suggest the existence of universal amplitudes in the finite-size scaling of certain correlation lengths in strongly anisotropic or dynamical phase transitions. For equilibrium systems, provided that translation invariance and hyperscaling are valid, the Privman-Fisher scaling form of isotropic equilibrium phase transitions is readily generalized. For non-equilibrium systems, universality is shown analytically for directed percolation and is tested numerically in the annihilation-coagulation model and in the pair contact process with diffusion. In these models, for both periodic and free boundary conditions, the universality of the finite-size scaling amplitude of the leading relaxation time is checked. Amplitude universality reveals strong transient effects along the active-inactive transition line in the pair contact process.Comment: 16 pages, Latex, 2 figures, final version, to appear in J. Phys.
    • …
    corecore