Abstract

Phenomenological scaling arguments suggest the existence of universal amplitudes in the finite-size scaling of certain correlation lengths in strongly anisotropic or dynamical phase transitions. For equilibrium systems, provided that translation invariance and hyperscaling are valid, the Privman-Fisher scaling form of isotropic equilibrium phase transitions is readily generalized. For non-equilibrium systems, universality is shown analytically for directed percolation and is tested numerically in the annihilation-coagulation model and in the pair contact process with diffusion. In these models, for both periodic and free boundary conditions, the universality of the finite-size scaling amplitude of the leading relaxation time is checked. Amplitude universality reveals strong transient effects along the active-inactive transition line in the pair contact process.Comment: 16 pages, Latex, 2 figures, final version, to appear in J. Phys.

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 28/02/2019