50 research outputs found

    Possible origins of macroscopic left-right asymmetry in organisms

    Full text link
    I consider the microscopic mechanisms by which a particular left-right (L/R) asymmetry is generated at the organism level from the microscopic handedness of cytoskeletal molecules. In light of a fundamental symmetry principle, the typical pattern-formation mechanisms of diffusion plus regulation cannot implement the "right-hand rule"; at the microscopic level, the cell's cytoskeleton of chiral filaments seems always to be involved, usually in collective states driven by polymerization forces or molecular motors. It seems particularly easy for handedness to emerge in a shear or rotation in the background of an effectively two-dimensional system, such as the cell membrane or a layer of cells, as this requires no pre-existing axis apart from the layer normal. I detail a scenario involving actin/myosin layers in snails and in C. elegans, and also one about the microtubule layer in plant cells. I also survey the other examples that I am aware of, such as the emergence of handedness such as the emergence of handedness in neurons, in eukaryote cell motility, and in non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue. Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec

    Redistribution of Actin during Assembly and Reassembly of the Contractile Ring in Grasshopper Spermatocytes

    Get PDF
    Cytokinesis in animal cells requires the assembly of an actomyosin contractile ring to cleave the cell. The ring is highly dynamic; it assembles and disassembles during each cell cleavage, resulting in the recurrent redistribution of actin. To investigate this process in grasshopper spermatocytes, we mechanically manipulated the spindle to induce actin redistribution into ectopic contractile rings, around reassembled lateral spindles. To enhance visualization of actin, we folded the spindle at its equator to convert the remnants of the partially assembled ring into a concentrated source of actin. Filaments from the disintegrating ring aligned along reorganizing spindle microtubules, suggesting that their incorporation into the new ring was mediated by microtubules. We tracked incorporation by speckling actin filaments with Qdots and/or labeling them with Alexa 488-phalloidin. The pattern of movement implied that actin was transported along spindle microtubules, before entering the ring. By double-labeling dividing cells, we imaged actin filaments moving along microtubules near the contractile ring. Together, our findings indicate that in one mechanism of actin redistribution, actin filaments are transported along spindle microtubule tracks in a plus-end–directed fashion. After reaching the spindle midzone, the filaments could be transported laterally to the ring. Notably, actin filaments undergo a dramatic trajectory change as they enter the ring, implying the existence of a pulling force. Two other mechanisms of actin redistribution, cortical flow and de novo assembly, are also present in grasshopper, suggesting that actin converges at the nascent contractile ring from diffuse sources within the cytoplasm and cortex, mediated by spindle microtubules

    Robust gap repair in the contractile ring ensures timely completion of cytokinesis

    Get PDF
    Cytokinesis in animal cells requires the constriction of an actomyosin contractile ring, whose architecture and mechanism remain poorly understood. We use laser microsurgery to explore the biophysical properties of constricting rings in Caenorhabditis elegans embryos. Laser cutting causes rings to snap open. However, instead of disintegrating, ring topology recovers and constriction proceeds. In response to severing, a finite gap forms and is repaired by recruitment of new material in an actin polymerization-dependent manner. An open ring is able to constrict, and rings repair from successive cuts. After gap repair, an increase in constriction velocity allows cytokinesis to complete at the same time as controls. Our analysis demonstrates that tension in the ring increases while net cortical tension at the site of ingression decreases throughout constriction and suggests that cytokinesis is accomplished by contractile modules that assemble and contract autonomously, enabling local repair of the actomyosin network. Consequently, cytokinesis is a highly robust process impervious to discontinuities in contractile ring structure.European Research Council grant: (640553); Fundo Europeu de Desenvolvimento Regional (FEDER) funds: (Operational Competitiveness Program - COMPETE); Fundação para a Ciência e a Tecnologia grant:(NORTE-07-0124-FEDER-000003); Fundação Luso-Americana para o Desenvolvimento (Life Science 2020); Louis-Jeantet Young Investigator Award; European Social Fund (Programa Operacional Temático Potencial Type 4.2); Programa Operacional Regional do Norte (Quadro de Referência Estratégico Nacional - FEDER).info:eu-repo/semantics/publishedVersio

    Uptake of Aortic 18F-FDG Is Correlated with Low-Density Lipoprotein Cholesterol and Leptin in a General Population

    Get PDF
    Objective: This study investigated the relationship between aortic 18F-fluoro-2-deoxy-D-glucose (18F-FDG) uptake and clinical and laboratory findings related to atherosclerosis in a general population. Copyright:Methods: 18F-FDG uptake in the ascending aorta was measured on the positron emission tomography/computed tomography (PET/CT) scans of 211 Japanese adults. The maximum target-to-background ratio (TBR) was compared with clinical and laboratory atherosclerosis findings.Results: By multivariate regression analysis adjusted for age and sex, TBR-ascending aorta (TBR-A) was significantly correlated with various clinical and laboratory parameters, such as body mass index, log visceral fat area, low-density lipoprotein cholesterol (LDL-C), log fasting immunoreactive insulin, log homeostasis model assessment of insulin resistance, log total adiponectin and log-leptin, in all subjects. Furthermore, by multivariate linear regression analysis adjusted for confounding factors, TBR-A was significantly correlated with LDL-C (β=0.001, p=0.03) and log-leptin (β =0.336, p<0.01) in all subjects.Conclusion: TBR-A was significantly correlated with LDL-C and log-leptin independent from confounding factors. Our results suggest that aortic 18F-FDG uptake is a good marker of atherosclerosis, even in a general population

    CENP-32 is required to maintain centrosomal dominance in bipolar spindle assembly

    Get PDF
    Centrosomes nucleate spindle formation, direct spindle pole positioning, and are important for proper chromosome segregation during mitosis in most animal cells. We previously reported that centromere protein 32 (CENP-32) is required for centrosome association with spindle poles during metaphase. In this study, we show that CENP-32 depletion seems to release centrosomes from bipolar spindles whose assembly they had previously initiated. Remarkably, the resulting anastral spindles function normally, aligning the chromosomes to a metaphase plate and entering anaphase without detectable interference from the free centrosomes, which appear to behave as free asters in these cells. The free asters, which contain reduced but significant levels of CDK5RAP2, show weak interactions with spindle microtubules but do not seem to make productive attachments to kinetochores. Thus CENP-32 appears to be required for centrosomes to integrate into a fully functional spindle that not only nucleates astral microtubules, but also is able to nucleate and bind to kinetochore and central spindle microtubules. Additional data suggest that NuMA tethers microtubules at the anastral spindle poles and that augmin is required for centrosome detachment after CENP-32 depletion, possibly due to an imbalance of forces within the spindle

    Augmin shapes the anaphase spindle for efficient cytokinetic furrow ingression and abscission.

    No full text
    During anaphase, distinct populations of microtubules (MTs) form by either centrosome-dependent or augmin-dependent nucleation. It remains largely unknown whether these different MT populations contribute distinct functions to cytokinesis. Here we show that augmin-dependent MTs are required for the progression of both furrow ingression and abscission. Augmin depletion reduced the accumulation of anillin, a contractile ring regulator at the cell equator, yet centrosomal MTs were sufficient to mediate RhoA activation at the furrow. This defect in contractile ring organization, combined with incomplete spindle pole separation during anaphase, led to impaired furrow ingression. During the late stages of cytokinesis, astral MTs formed bundles in the intercellular bridge, but these failed to assemble a focused midbody structure and did not establish tight linkage to the plasma membrane, resulting in furrow regression. Thus augmin-dependent acentrosomal MTs and centrosomal MTs contribute to nonredundant targeting mechanisms of different cytokinesis factors, which are required for the formation of a functional contractile ring and midbody
    corecore