1,400 research outputs found

    Mapping the potential within a nanoscale undoped GaAs region using a scanning electron microscope

    Full text link
    Semiconductor dopant profiling using secondary electron imaging in a scanning electron microscope (SEM) has been developed in recent years. In this paper, we show that the mechanism behind it also allows mapping of the electric potential of undoped regions. By using an unbiased GaAs/AlGaAs heterostructure, this article demonstrates the direct observation of the electrostatic potential variation inside a 90nm wide undoped GaAs channel surrounded by ionized dopants. The secondary electron emission intensities are compared with two-dimensional numerical solutions of the electric potential.Comment: 7 pages, 3 figure

    Khovanov Homology, Lee Homology and a Rasmussen Invariant for Virtual Knots

    Full text link
    The paper contains an essentially self-contained treatment of Khovanov homology, Khovanov-Lee homology as well as the Rasmussen invariant for virtual knots and virtual knot cobordisms which directly applies to classical knot and classical knot cobordisms. To do so, we give an alternate formulation for the Manturov definition of Khovanov homology for virtual knots and links with arbitrary coefficients. This approach uses cut loci on the knot diagram to induce a conjugation operator in the Frobenius algebra. We then discuss the implications of the maps induced in the aforementioned theory to the universal Frobenius algebra for virtual knots. Next we show how one can apply the Karoubi envelope approach of Bar-Natan and Morrison on abstract link diagrams with cross cuts to construct the canonical generators of the Khovanov-Lee homology. Using these canonical generators we derive a generalization of the Rasmussen invariant for virtual knot cobordisms and furthermore generalize Rasmussen's result on the slice genus for positive knots to the case of positive virtual knots. It should also be noted that this generalization of the Rasmussen invariant provides an easy to compute obstruction to knot cobordisms in Sg×I×IS_g \times I \times I in the sense of Turaev

    Synchronized single electron emission from dynamical quantum dots

    Full text link
    We study synchronized quantized charge pumping through several dynamical quantum dots (QDs) driven by a single time modulated gate signal. We show that the main obstacle for synchronization being the lack of uniformity can be overcome by operating the QDs in the decay cascade regime. We discuss the mechanism responsible for lifting the stringent uniformity requirements. This enhanced functionality of dynamical QDs might find applications in nanoelectronics and quantum metrology.Comment: 4 pages, 3 figures, submitted to AP

    3D tomography of cells in micro-channels

    Get PDF
    We combine confocal imaging, microfluidics and image analysis to record 3D-images of cells in flow. This enables us to recover the full 3D representation of several hundred living cells per minute. Whereas 3D confocal imaging has thus far been limited to steady specimen, we overcome this restriction and present a method to access the 3D shape of moving objects. The key of our principle is a tilted arrangement of the micro-channel with respect to the focal plane of the microscope. This forces cells to traverse the focal plane in an inclined manner. As a consequence, individual layers of passing cells are recorded which can then be assembled to obtain the volumetric representation. The full 3D information allows for a detailed comparisons with theoretical and numerical predictions unfeasible with e.g.\ 2D imaging. Our technique is exemplified by studying flowing red blood cells in a micro-channel reflecting the conditions prevailing in the microvasculature. We observe two very different types of shapes: `croissants' and `slippers'. Additionally, we perform 3D numerical simulations of our experiment to confirm the observations. Since 3D confocal imaging of cells in flow has not yet been realized, we see high potential in the field of flow cytometry where cell classification thus far mostly relies on 1D scattering and fluorescence signals

    Does Reality TV Induce Real Effects? On the Questionable Association Between 16 and Pregnant and Teenage Childbearing

    Full text link
    We reassess recent and widely reported evidence that the MTV program 16 and Pregnant played a major role in reducing teen birth rates in the U.S. since it began broadcasting in 2009 (Kearney and Levine, American Economic Review 2015). We find Kearney and Levine's identification strategy to be problematic. Through a series of placebo and other tests, we show that the exclusion restriction of their instrumental variables approach is not valid and find that the assumption of common trends in birth rates between low and high MTV-watching areas is not met. We also reassess Kearney and Levine's evidence from social media and show that it is fragile and highly sensitive to the choice of included periods and to the use of weights. We conclude that Kearney and Levine's results are uninformative about the effect of 16 and Pregnant on teen birth rates

    Edge spin accumulation in semiconductor two-dimensional hole gases

    Full text link
    The controlled generation of localized spin densities is a key enabler of semiconductor spintronics In this work, we study spin Hall effect induced edge spin accumulation in a two-dimensional hole gas with strong spin orbit interactions. We argue that it is an intrinsic property, in the sense that it is independent of the strength of disorder scattering. We show numerically that the spin polarization near the edge induced by this mechanism can be large, and that it becomes larger and more strongly localized as the spin-orbit coupling strength increases, and is independent of the width of the conducting strip once this exceeds the elastic scattering mean-free-path. Our experiments in two-dimensional hole gas microdevices confirm this remarkable spin Hall effect phenomenology. Achieving comparable levels of spin polarization by external magnetic fields would require laboratory equipment whose physical dimensions and operating electrical currents are million times larger than those of our spin Hall effect devices.Comment: 6 pages, 5 figure

    Water flow between soil aggregates

    Get PDF
    Aggregated soils are structured systems susceptible to non-uniform flow. The hydraulic properties depend on the aggregate fabric and the way the aggregates are assembled. We examined the hydraulic behavior of an aggregate packing. We focused on conditions when water mostly flows through the aggregates, leaving the inter-aggregate pore space air-filled. The aggregates were packed in 3mm thick slabs forming a quasi two-dimensional bedding. The larger aggregates were wetted with water and embedded in smaller aggregates equilibrated at a lower water content. The water exchange between wet and drier aggregates was monitored by neutron radiography. The three-dimensional arrangement of the aggregates was reconstructed by neutron tomography. The water flow turned out to be controlled by the contacts between aggregates, bottle-necks that slow down the flow. The bottle-neck effect is due to the narrow flow cross section of the contacts. The water exchange was simulated by considering the contact area between aggregates as the key parameter. In order to match the observed water flow, the contact area must be reduced by one to two orders of magnitude relative to that obtained from image analysis. The narrowness of the contacts is due to air-filled voids within the contact
    corecore