18 research outputs found

    Identity of Schizaphis species (Hemiptera Aphididae) in the United Kingdom are they a threat to crops?

    No full text
    AbstractThe greenbug, Schizaphis graminum (Rondani), is a major pest of cereals in some parts of the world and is of particular concern because it can be resistant to some insecticides and overcome the resistance of crops. In the UK, it has never been found on crops, but two rather little-known and closely-related species (Schizaphis holci and Schizaphis agrostis) are associated with the wild grasses, Holcus lanatus and Agrostis stolonifera. Since 1987, winged (alate) aphids morphologically resembling the greenbug have been found in increasing numbers in 12.2 m high suction-trap samples of the Rothamsted Insect Survey (RIS); hence, studies were undertaken to establish their identity. Clones (=asexual lineages) established from populations collected from H. lanatus in southern England showed strong preference for Holcus over Agrostis and Hordeum in laboratory tests and produced sexual morphs when transferred to short-day conditions, the males being apterous, as expected for S. holci. Multivariate morphometric comparisons of alatae caught in UK RIS suction traps in 2007 and 2011 with named specimens from museum collections, including S. graminum from many countries, indicated that the suction-trapped alatae were mostly S. agrostis and S. holci. Cytochrome c oxidase subunit I (COI) mtDNA obtained from 62 UK specimens from suction-traps had 95.4–100% sequence identity with US specimens of S. graminum. Two of the UK specimens had identical COI sequence to the US sorghum-adapted form of S. graminum, and these specimens also had 100% identity with a 640 bp fragment of nDNA CytC, indicating that this form of S. graminum may already be present in the UK. Present and future economic implications of these results are discussed.</jats:p

    Genomic and proteomic analysis of Schizaphis graminum reveals cyclophilin proteins are involved in the transmission of cereal yellow dwarf virus

    Get PDF
    Citation: Tamborindeguy, C., . . . Cilia, M. (2013). Genomic and Proteomic Analysis of Schizaphis graminum Reveals Cyclophilin Proteins Are Involved in the Transmission of Cereal Yellow Dwarf Virus. PLoS One, 8(8), e71620. https://doi.org/10.1371/journal.pone.0071620Yellow dwarf viruses cause the most economically important virus diseases of cereal crops worldwide and are transmitted by aphid vectors. The identification of aphid genes and proteins mediating virus transmission is critical to develop agriculturally sustainable virus management practices and to understand viral strategies for circulative movement in all insect vectors. Two cyclophilin B proteins, S28 and S29, were identified previously in populations of Schizaphis graminum that differed in their ability to transmit the RPV strain of Cereal yellow dwarf virus (CYDV-RPV). The presence of S29 was correlated with F2 genotypes that were efficient virus transmitters. The present study revealed the two proteins were isoforms, and a single amino acid change distinguished S28 and S29. The distribution of the two alleles was determined in 12 F2 genotypes segregating for CYDV-RPV transmission capacity and in 11 genetically independent, field-collected S. graminum biotypes. Transmission efficiency for CYDV-RPV was determined in all genotypes and biotypes. The S29 isoform was present in all genotypes or biotypes that efficiently transmit CYDV-RPV and more specifically in genotypes that efficiently transport virus across the hindgut. We confirmed a direct interaction between CYDV-RPV and both S28 and S29 using purified virus and bacterially expressed, his-tagged S28 and S29 proteins. Importantly, S29 failed to interact with a closely related virus that is transported across the aphid midgut. We tested for in vivo interactions using an aphid-virus co-immunoprecipitation strategy coupled with a bottom-up LC-MS/MS analysis using a Q Exactive mass spectrometer. This analysis enabled us to identify a third cyclophilin protein, cyclophilin A, interacting directly or in complex with purified CYDV-RPV. Taken together, these data provide evidence that both cyclophilin A and B interact with CYDV-RPV, and these interactions may be important but not sufficient to mediate virus transport from the hindgut lumen into the hemocoel
    corecore