132 research outputs found

    Effects of Intensive Late-Season Sheep Grazing Following Early-Season Steer Grazing on Population Dynamics of Sericea Lespedeza in the Kansas Flint Hills

    Get PDF
    Sericea lespedeza (Lespedeza cuneata; SL) is a high-tannin, invasive forb in the Tallgrass Prairie ecosystem. In Kansas, sericea lespedeza infests 980 square miles of pasture, primarily in the Flint Hills region. Sericea lespedeza infestations reduce native grass production by up to 92% through a combination of aggressive growth, prolific reproduction, canopy dominance, and chemical inhibition (allelopathy). Herbicides retard the spread of sericea lespedeza, but application is laborious and expensive; moreover, herbicides are lethal to ecologically-important, non-target plant species. Increased grazing pressure on sericea lespedeza by domestic herbivores may slow its spread and facilitate some measure of biological control. Unfortunately, mature plants contain high levels of condensed tannins, which are a strong deterrent to grazing by beef cattle. Small ruminants have greater tolerance for condensed tannins than beef cattle. Sheep, in particular, appear less susceptible to certain plant toxins than beef cattle and may be useful to selectively pressure noxious weeds like sericea lespedeza. The predominant grazing management practice in the Flint Hills region of Kansas involves annual spring burning followed by intensive grazing with yearling beef cattle from April to August. During seasonal grazing, 40 to 60% of annual graminoid production is removed and pastures remain idle for the remainder of the year. Under this prevailing management practice, invasion by sericea lespedeza into the Tallgrass Prairie biome has steadily increased. Sericea lespedeza flowers and produces seed in late summer from August to September. The absence of grazing pressure during this interval strongly promotes seed production, seed distribution, and continued invasion of the Flint Hills ecoregion by this noxious weed. Therefore, the objective of our study was to evaluate effects of late-season sheep grazing following locally-conventional steer grazing on vigor and reproductive capabilities of sericea lespedeza

    High-throughput UHPLC/MS/MS-based metabolic profiling using a vacuum jacketed column

    Get PDF
    In UHPLC, frictional heating from the eluent flowing through the column at pressures of ca. 10–15 Kpsi causes radial diffusion via temperature differences between the center of the column and its walls. Longitudinal dispersion also occurs due to temperature gradients between the inlet and outlet. These effects cause band broadening but can be mitigated via a combination of vacuum jacketed stainless steel tubing, reduced column end nut mass, and a constant temperature in the column from heating the inlet fitting. Here, vacuum jacketed column (VJC) technology, employing a novel column housing located on the source of the mass spectrometer and minimized tubing from the column outlet to the electrospray probe, was applied to profiling metabolites in urine. For a 75 s reversed-phase gradient separation, the average peak widths for endogenous compounds in urine were 1.2 and 0.6 s for conventional LC/MS and VJC systems, respectively. The peak tailing factor was reduced from 1.25 to 1.13 when using the VJC system compared to conventional UHPLC, and the peak capacity increased from 65 to 120, with a 25% increase in features detected in urine. The increased resolving power of the VJC system reduced co-elution, simplifying MS and MS/MS spectra, providing a more confident metabolite identification. The increased LC performance also gave more intense MS peaks, with a 10–120% increase in response, improving the quality of the MS data and detection limits. Reducing the LC gradient duration to 37 s gave peak widths of ca. 0.4 s and a peak capacity of 84

    High throughput UHPLC-MS-based lipidomics using vacuum jacketed columns

    Get PDF
    Reversed-phase UHPLC-MS is extensively employed for both the profiling of biological fluids and tissues to characterize lipid dysregulation in disease and toxicological studies. With conventional LC-MS systems the chromatographic performance and throughput are limited due to dispersion from the fluidic connections as well as radial and longitudinal thermal gradients in the LC column. In this study vacuum jacketed columns (VJC), positioned at the source of the mass spectrometer, were applied to the lipidomic analysis of plasma extracts. Compared to conventional UHPLC, the VJC-based methods offered greater resolution, faster analysis, and improved peak intensity. For a 5 min VJC analysis, the peak capacity increased by 66%, peak tailing reduced by up to 34%, and the number of lipids detected increased by 30% compared to conventional UHPLC. The narrower peaks, and thus increased resolution, compared to the conventional system resulted in a 2-fold increase in peak intensity as well a significant improvement in MS and MS/MS spectral quality resulting in a 22% increase in the number of lipids identified. When applied to mouse plasma samples, reproducibility of the lipid intensities in the pooled QC ranged from 1.8–12%, with no related drift in tR observed

    Direct Evidence for Dominant Bond-directional Interactions in a Honeycomb Lattice Iridate Na2IrO3

    Get PDF
    Heisenberg interactions are ubiquitous in magnetic materials and have been prevailing in modeling and designing quantum magnets. Bond-directional interactions offer a novel alternative to Heisenberg exchange and provide the building blocks of the Kitaev model, which has a quantum spin liquid (QSL) as its exact ground state. Honeycomb iridates, A2IrO3 (A=Na,Li), offer potential realizations of the Kitaev model, and their reported magnetic behaviors may be interpreted within the Kitaev framework. However, the extent of their relevance to the Kitaev model remains unclear, as evidence for bond-directional interactions remains indirect or conjectural. Here, we present direct evidence for dominant bond-directional interactions in antiferromagnetic Na2IrO3 and show that they lead to strong magnetic frustration. Diffuse magnetic x-ray scattering reveals broken spin-rotational symmetry even above Neel temperature, with the three spin components exhibiting nano-scale correlations along distinct crystallographic directions. This spin-space and real-space entanglement directly manifests the bond-directional interactions, provides the missing link to Kitaev physics in honeycomb iridates, and establishes a new design strategy toward frustrated magnetism.Comment: Nature Physics, accepted (2015

    Comparative evaluation of the treatment efficacy of suberoylanilide hydroxamic acid (SAHA) and paclitaxel in ovarian cancer cell lines and primary ovarian cancer cells from patients

    Get PDF
    BACKGROUND: In most patients with ovarian cancer, diagnosis occurs after the tumour has disseminated beyond the ovaries. In these cases, post-surgical taxane/platinum combination chemotherapy is the "gold standard". However, most of the patients experience disease relapse and eventually die due to the emergence of chemotherapy resistance. Histone deacetylase inhibitors are novel anticancer agents that hold promise to improve patient outcome. METHODS: We compared a prototypic histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), and paclitaxel for their treatment efficacy in ovarian cancer cell lines and in primary patient-derived ovarian cancer cells. The primary cancer cells were isolated from malignant ascites collected from five patients with stage III ovarian carcinomas. Cytotoxic activities were evaluated by Alamar Blue assay and by caspase-3 activation. The ability of SAHA to kill drug-resistant 2780AD cells was also assessed. RESULTS: By employing the cell lines OVCAR-3, SK-OV-3, and A2780, we established SAHA at concentrations of 1 to 20 ΞΌM to be as efficient in inducing cell death as paclitaxel at concentrations of 3 to 300 nM. Consequently, we treated the patient-derived cancer cells with these doses of the drugs. All five isolates were sensitive to SAHA, with cell killing ranging from 21% to 63% after a 72-h exposure to 20 ΞΌM SAHA, while four of them were resistant to paclitaxel (i.e., <10% cell death at 300 nM paclitaxel for 72 hours). Likewise, treatment with SAHA led to an increase in caspase-3 activity in all five isolates, whereas treatment with paclitaxel had no effect on caspase-3 activity in three of them. 2780AD cells were responsive to SAHA but resistant to paclitaxel. CONCLUSION: These ex vivo findings raise the possibility that SAHA may prove effective in the treatment of paclitaxel-resistant ovarian cancer in vivo

    Does reductive metabolism predict response to tirapazamine (SR 4233) in human non-small-cell lung cancer cell lines?

    Get PDF
    The bioreductive drug tirapazamine (TPZ, SR 4233, WIN 59075) is a lead compound in a series of potent cytotoxins that selectively kill hypoxic rodent and human solid tumour cells in vitro and in vivo. Phases II and III trials have demonstrated its efficacy in combination with both fractionated radiotherapy and some chemotherapy. We have evaluated the generality of an enzyme-directed approach to TPZ toxicity by examining the importance of the one-electron reducing enzyme NADPH:cytochrome P450 reductase (P450R) in the metabolism and toxicity of this lead prodrug in a panel of seven human non-small-cell lung cancer cell lines. We relate our findings on TPZ sensitivity in these lung lines with our previously published results on TPZ sensitivity in six human breast cancer cell lines (Patterson et al (1995) Br J Cancer 72: 1144–1150) and with the sensitivity of all these cell types to eight unrelated cancer chemotherapeutic agents with diverse modes of action. Our results demonstrate that P450R plays a significant role in the activation of TPZ in this panel of lung lines, which is consistent with previous observations in a panel of breast cancer cell lines (Patterson et al (1995) Br J Cancer 72: 1144–1150; Patterson et al (1997) Br J Cancer 76: 1338–1347). However, in the lung lines it is likely that it is the inherent ability of these cells to respond to multiple forms of DNA damage, including that arising from P450R-dependent TPZ metabolism, that underlies the ultimate expression of toxicity. Β© 1999 Cancer Research Campaig

    Validation of the SF-36 in patients with endometriosis.

    Get PDF
    OBJECTIVES: Endometriosis presents with significant pain as the most common symptom. Generic health measures can allow comparisons across diseases or populations. However, the Medical Outcomes Study Short Form 36 (SF-36) has not been validated for this disease. The goal of this study was to validate the SF-36 (version 2) for endometriosis. METHODS: Using data from two clinical trials (N = 252 and 198) of treatment for endometriosis, a full complement of psychometric analyses was performed. Additional instruments included a pain visual analog scale (VAS); a physician-completed questionnaire based on patient interview (modified Biberoglu and Behrman--B&B); clinical global impression of change (CGI-C); and patient satisfaction with treatment. RESULTS: Bodily pain (BP) and the Physical Component Summary Score (PCS) were correlated with the pain VAS at baseline and over time and the B&B at baseline and end of study. In addition, those who had the greatest change in BP and PCS also reported the greatest change on CGI-C and patient satisfaction with treatment. Other subscales showed smaller, but significant, correlations with change in the pain VAS, CGI-C, and patient satisfaction with treatment. CONCLUSIONS: The SF-36--particularly BP and the PCS--appears to be a valid and responsive measure for endometriosis and its treatment

    Thymosin Ξ²10 Expression Driven by the Human TERT Promoter Induces Ovarian Cancer-Specific Apoptosis through ROS Production

    Get PDF
    Thymosin Ξ²10 (TΞ²10) regulates actin dynamics as a cytoplasm G-actin sequestering protein. Previously, we have shown that TΞ²10 diminishes tumor growth, angiogenesis, and proliferation by disrupting actin and by inhibiting Ras. However, little is known about its mechanism of action and biological function. In the present study, we establish a new gene therapy model using a genetically modified adenovirus, referred to as Ad.TERT.TΞ²10, that can overexpress the TΞ²10 gene in cancer cells. This was accomplished by replacing the native TΞ²10 gene promoter with the human TERT promoter in Ad.TERT.TΞ²10. We investigated the cancer suppression activity of TΞ²10 and found that Ad.TERT.TΞ²10 strikingly induced cancer-specific expression of TΞ²10 as well as apoptosis in a co-culture model of human primary ovarian cancer cells and normal fibroblasts. Additionally, Ad.TERT.TΞ²10 decreased mitochondrial membrane potential and increased reactive oxygen species (ROS) production. These effects were amplified by co-treatment with anticancer drugs, such as paclitaxel and cisplatin. These findings indicate that the rise in ROS production due to actin disruption by TΞ²10 overexpression increases apoptosis of human ovarian cancer cells. Indeed, the cancer-specific overexpression of TΞ²10 by Ad.TERT.TΞ²10 could be a valuable anti-cancer therapeutic for the treatment of ovarian cancer without toxicity to normal cells

    Resistance gene expression determines the in vitro chemosensitivity of non-small cell lung cancer (NSCLC)

    Get PDF
    Background NSCLC exhibits considerable heterogeneity in its sensitivity to chemotherapy and similar heterogeneity is noted in vitro in a variety of model systems. This study has tested the hypothesis that the molecular basis of the observed in vitro chemosensitivity of NSCLC lies within the known resistance mechanisms inherent to these patients' tumors. Methods The chemosensitivity of a series of 49 NSCLC tumors was assessed using the ATP-based tumor chemosensitivity assay (ATP-TCA) and compared with quantitative expression of resistance genes measured by RT-PCR in a Taqman Arrayβ„’ following extraction of RNA from formalin-fixed paraffin-embedded (FFPE) tissue. Results There was considerable heterogeneity between tumors within the ATP-TCA, and while this showed no direct correlation with individual gene expression, there was strong correlation of multi-gene signatures for many of the single agents and combinations tested. For instance, docetaxel activity showed some dependence on the expression of drug pumps, while cisplatin activity showed some dependence on DNA repair enzyme expression. Activity of both drugs was influenced more strongly still by the expression of anti- and pro-apoptotic genes by the tumor for both docetaxel and cisplatin. The doublet combinations of cisplatin with gemcitabine and cisplatin with docetaxel showed gene expression signatures incorporating resistance mechanisms for both agents. Conclusion Genes predicted to be involved in known mechanisms drug sensitivity and resistance correlate well with in vitro chemosensitivity and may allow the definition of predictive signatures to guide individualized chemotherapy in lung cancer
    • …
    corecore