87 research outputs found

    Bovine Lactoferrin Counteracts Toll-Like Receptor Mediated Activation Signals in Antigen Presenting Cells

    Get PDF
    Lactoferrin (LF), a key element in mammalian immune system, plays pivotal roles in host defence against infection and excessive inflammation. Its protective effects range from direct antimicrobial activities against a large panel of microbes, including bacteria, viruses, fungi and parasites, to antinflammatory and anticancer activities. In this study, we show that monocyte-derived dendritic cells (MD-DCs) generated in the presence of bovine LF (bLF) fail to undergo activation by up-modulating CD83, co-stimulatory and major histocompatibility complex molecules, and cytokine/chemokine secretion. Moreover, these cells are weak activators of T cell proliferation and retain antigen uptake activity. Consistent with an impaired maturation, bLF-MD-DC primed T lymphocytes exhibit a functional unresponsiveness characterized by reduced expression of CD154 and impaired expression of IFN-Îł and IL-2. The observed imunosuppressive effects correlate with an increased expression of molecules with negative regulatory functions (i.e. immunoglobulin-like transcript 3 and programmed death ligand 1), indoleamine 2,3-dioxygenase, and suppressor of cytokine signaling-3. Interestingly, bLF-MD-DCs produce IL-6 and exhibit constitutive signal transducer and activator of transcription 3 activation. Conversely, bLF exposure of already differentiated MD-DCs completely fails to induce IL-6, and partially inhibits Toll-like receptor (TLR) agonist-induced activation. Cell-specific differences in bLF internalization likely account for the distinct response elicited by bLF in monocytes versus immature DCs, providing a mechanistic base for its multiple effects. These results indicate that bLF exerts a potent anti-inflammatory activity by skewing monocyte differentiation into DCs with impaired capacity to undergo activation and to promote Th1 responses. Overall, these bLF-mediated effects may represent a strategy to block excessive DC activation upon TLR-induced inflammation, adding further evidence for a critical role of bLF in directing host immune function

    Role of PACAP and VIP Signalling in Regulation of Chondrogenesis and Osteogenesis

    Get PDF
    Pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are multifunctional proteins that can regulate diverse physiological processes. These are also regarded as neurotrophic and anti-inflammatory substances in the CNS, and PACAP is reported to prevent harmful effects of oxidative stress. In the last decade more and more data accumulated on the similar function of PACAP in various tissues, but its cartilage- and bone-related presence and functions have not been widely investigated yet. In this summary we plan to verify the presence and function of PACAP and VIP signalling tool kit during cartilage differentiation and bone formation. We give evidence about the protective function of PACAP in cartilage regeneration with oxidative or mechanically stress and also with the modulation of PACAP signalling in vitro in osteogenic cells. Our observations imply the therapeutic perspective that PACAP might be applicable as a natural agent exerting protecting effect during joint inflammation and/or may promote cartilage regeneration during degenerative diseases of articular cartilage

    Intravascular haemolysis in severe Plasmodium knowlesi malaria: association with endothelial activation, microvascular dysfunction, and acute kidney injury

    No full text
    Plasmodium knowlesi occurs throughout Southeast Asia, and is the most common cause of human malaria in Malaysia. Severe disease in humans is characterised by high parasite biomass, reduced red blood cell deformability, endothelial activation and microvascular dysfunction. However, the roles of intravascular haemolysis and nitric oxide (NO)-dependent endothelial dysfunction, important features of severe falciparum malaria, have not been evaluated, nor their role in acute kidney injury (AKI). In hospitalised Malaysian adults with severe (n = 48) and non-severe (n = 154) knowlesi malaria, and in healthy controls (n = 50), we measured cell-free haemoglobin (CFHb) and assessed associations with the endothelial Weibel-Palade body (WPB) constituents, angiopoietin-2 and osteoprotegerin, endothelial and microvascular function, and other markers of disease severity. CFHb was increased in knowlesi malaria in proportion to disease severity, and to a greater extent than previously reported in severe falciparum malaria patients from the same study cohort. In knowlesi malaria, CFHb was associated with parasitaemia, and independently associated with angiopoietin-2 and osteoprotegerin. As with angiopoietin-2, osteoprotegerin was increased in proportion to disease severity, and independently associated with severity markers including creatinine, lactate, interleukin-6, endothelial cell adhesion molecules ICAM-1 and E-selectin, and impaired microvascular reactivity. Osteoprotegerin was also independently associated with NO-dependent endothelial dysfunction. AKI was found in 88% of those with severe knowlesi malaria. Angiopoietin-2 and osteoprotegerin were both independent risk factors for acute kidney injury. Our findings suggest that haemolysis-mediated endothelial activation and release of WPB constituents is likely a key contributor to end-organ dysfunction, including AKI, in severe knowlesi malaria

    Intravascular haemolysis in severe Plasmodium knowlesi malaria: association with endothelial activation, microvascular dysfunction, and acute kidney injury

    No full text
    Plasmodium knowlesi occurs throughout Southeast Asia, and is the most common cause of human malaria in Malaysia. Severe disease in humans is characterised by high parasite biomass, reduced red blood cell deformability, endothelial activation and microvascular dysfunction. However, the roles of intravascular haemolysis and nitric oxide (NO)-dependent endothelial dysfunction, important features of severe falciparum malaria, have not been evaluated, nor their role in acute kidney injury (AKI). In hospitalised Malaysian adults with severe (n = 48) and non-severe (n = 154) knowlesi malaria, and in healthy controls (n = 50), we measured cell-free haemoglobin (CFHb) and assessed associations with the endothelial Weibel-Palade body (WPB) constituents, angiopoietin-2 and osteoprotegerin, endothelial and microvascular function, and other markers of disease severity. CFHb was increased in knowlesi malaria in proportion to disease severity, and to a greater extent than previously reported in severe falciparum malaria patients from the same study cohort. In knowlesi malaria, CFHb was associated with parasitaemia, and independently associated with angiopoietin-2 and osteoprotegerin. As with angiopoietin-2, osteoprotegerin was increased in proportion to disease severity, and independently associated with severity markers including creatinine, lactate, interleukin-6, endothelial cell adhesion molecules ICAM-1 and E-selectin, and impaired microvascular reactivity. Osteoprotegerin was also independently associated with NO-dependent endothelial dysfunction. AKI was found in 88% of those with severe knowlesi malaria. Angiopoietin-2 and osteoprotegerin were both independent risk factors for acute kidney injury. Our findings suggest that haemolysis-mediated endothelial activation and release of WPB constituents is likely a key contributor to end-organ dysfunction, including AKI, in severe knowlesi malaria

    Intravascular haemolysis in severe Plasmodium knowlesi

    Get PDF
    Plasmodium knowlesi occurs throughout Southeast Asia, and is the most common cause of human malaria in Malaysia. Severe disease in humans is characterised by high parasite biomass, reduced red blood cell deformability, endothelial activation and microvascular dysfunction. However, the roles of intravascular haemolysis and nitric oxide (NO)-dependent endothelial dysfunction, important features of severe falciparum malaria, have not been evaluated, nor their role in acute kidney injury (AKI). In hospitalised Malaysian adults with severe (n = 48) and non-severe (n = 154) knowlesi malaria, and in healthy controls (n = 50), we measured cell-free haemoglobin (CFHb) and assessed associations with the endothelial Weibel-Palade body (WPB) constituents, angiopoietin-2 and osteoprotegerin, endothelial and microvascular function, and other markers of disease severity. CFHb was increased in knowlesi malaria in proportion to disease severity, and to a greater extent than previously reported in severe falciparum malaria patients from the same study cohort. In knowlesi malaria, CFHb was associated with parasitaemia, and independently associated with angiopoietin-2 and osteoprotegerin. As with angiopoietin-2, osteoprotegerin was increased in proportion to disease severity, and independently associated with severity markers including creatinine, lactate, interleukin-6, endothelial cell adhesion molecules ICAM-1 and E-selectin, and impaired microvascular reactivity. Osteoprotegerin was also independently associated with NO-dependent endothelial dysfunction. AKI was found in 88% of those with severe knowlesi malaria. Angiopoietin-2 and osteoprotegerin were both independent risk factors for acute kidney injury. Our findings suggest that haemolysis-mediated endothelial activation and release of WPB constituents is likely a key contributor to end-organ dysfunction, including AKI, in severe knowlesi malaria

    Novel RNA viruses associated with Plasmodium vivax in human malaria and Leucocytozoon parasites in avian disease

    Full text link
    Eukaryotes of the genus Plasmodium cause malaria, a parasitic disease responsible for substantial morbidity and mortality in humans. Yet, the nature and abundance of any viruses carried by these divergent eukaryotic parasites is unknown. We investigated the Plasmodium virome by performing a meta-transcriptomic analysis of blood samples taken from patients suffering from malaria and infected with P. vivax, P. falciparum or P. knowlesi. This resulted in the identification of a narnavirus-like sequence, encoding an RNA polymerase and restricted to P. vivax samples, as well as an associated viral segment of unknown function. These data, confirmed by PCR, are indicative of a novel RNA virus that we term Matryoshka RNA virus 1 (MaRNAV-1) to reflect its analogy to a "Russian doll": A virus, infecting a parasite, infecting an animal. Additional screening revealed that MaRNAV-1 was abundant in geographically diverse P. vivax derived from humans and mosquitoes, strongly supporting its association with this parasite, and not in any of the other Plasmodium samples analyzed here nor Anopheles mosquitoes in the absence of Plasmodium. Notably, related bi-segmented narnavirus-like sequences (MaRNAV-2) were retrieved from Australian birds infected with a Leucocytozoon -a genus of eukaryotic parasites that group with Plasmodium in the Apicomplexa subclass hematozoa. Together, these data support the establishment of two new phylogenetically divergent and genomically distinct viral species associated with protists, including the first virus likely infecting Plasmodium parasites. As well as broadening our understanding of the diversity and evolutionary history of the eukaryotic virosphere, the restriction to P. vivax may be of importance in understanding P. vivax-specific biology in humans and mosquitoes, and how viral co-infection might alter host responses at each stage of the P. vivax life-cycle

    Ex vivo drug susceptibility of ferroquine against chloroquine-resistant isolates of Plasmodium falciparum and P. vivax.

    Get PDF
    Ferroquine (FQ; SSR97193), a ferrocene-containing 4-aminoquinoline derivate, has potent in vitro efficacy against chloroquine (CQ)-resistant Plasmodium falciparum and CQ-sensitive P. vivax. In the current study, ex vivo FQ activity was tested in multidrug-resistant P. falciparum and P. vivax field isolates using a schizont maturation assay. Although FQ showed excellent activity against CQ-sensitive and -resistant P. falciparum and P. vivax (median 50% inhibitory concentrations [IC(50)s], 9.6 nM and 18.8 nM, respectively), there was significant cross-susceptibility with the quinoline-based drugs chloroquine, amodiaquine, and piperaquine (for P. falciparum, r = 0.546 to 0.700, P < 0.001; for P. vivax, r = 0.677 to 0.821, P < 0.001). The observed ex vivo cross-susceptibility is likely to reflect similar mechanisms of drug uptake/efflux and modes of drug action of this drug class. However, the potent activity of FQ against resistant isolates of both P. falciparum and P. vivax highlights a promising role for FQ as a lead antimalarial against CQ-resistant Plasmodium and a useful partner drug for artemisinin-based combination therapy

    The effect of regularly dosed paracetamol versus no paracetamol on renal function in Plasmodium knowlesi malaria (PACKNOW): study protocol for a randomised controlled trial

    No full text
    Background Plasmodium knowlesi is the most common cause of human malaria in Malaysia. Acute kidney injury (AKI) is a frequent complication. AKI of any cause can have long-term consequences, including increased risk of chronic kidney disease, adverse cardiovascular events and increased mortality. Additional management strategies are therefore needed to reduce the frequency and severity of AKI in malaria. In falciparum malaria, cell-free haemoglobin (CFHb)-mediated oxidative damage contributes to AKI. The inexpensive and widely available drug paracetamol inhibits CFHb-induced lipid peroxidation via reduction of ferryl haem to the less toxic Fe3+ state, and has been shown to reduce oxidative damage and improve renal function in patients with sepsis complicated by haemolysis as well as in falciparum malaria. This study aims to assess the ability of regularly dosed paracetamol to reduce the incidence and severity of AKI in knowlesi malaria by attenuating haemolysis-induced oxidative damage. Methods PACKNOW is a two-arm, open-label randomised controlled trial of adjunctive paracetamol versus no paracetamol in patients aged ≥ 5 years with knowlesi malaria, conducted over a 2-year period at four hospital sites in Sabah, Malaysia. The primary endpoint of change in creatinine from enrolment to 72 h will be evaluated by analysis of covariance (ANCOVA) using enrolment creatinine as a covariate. Secondary endpoints include longitudinal changes in markers of oxidative stress (plasma F2-isoprostanes and isofurans) and markers of endothelial activation/Weibel–Palade body release (angiopoietin-2, von Willebrand Factor, P-selectin, osteoprotegerin) over 72 h, as well as blood and urine biomarkers of AKI. This study will be powered to detect a difference between the two treatment arms in a clinically relevant population including adults and children with knowlesi malaria of any severity. Discussion Paracetamol is widely available and has an excellent safety profile; if a renoprotective effect is demonstrated, this trial will support the administration of regularly dosed paracetamol to all patients with knowlesi malaria. The secondary outcomes in this study will provide further insights into the pathophysiology of haemolysis-induced oxidative damage and acute kidney injury in knowlesi malaria and other haemolytic diseases

    Differential cellular recognition of antigens during acute Plasmodium falciparum and Plasmodium vivax malaria.

    No full text
    BACKGROUND: Plasmodium falciparum and Plasmodium vivax are co-endemic in the Asia-Pacific region. Their capacity to induce and sustain diverse T-cell responses underpins protective immunity. We compared T-cell responses to the largely conserved merozoite surface protein-5 (PfMSP5) during acute and convalescent falciparum and vivax malaria. METHODS: Lymphoproliferation and IFN--Îł secretion to PfMSP5 and purified protein derivate were quantified in adults with falciparum (n=34), and vivax malaria (n=12) or asymptomatic residents (n=10) of Papua, Indonesia. Responses were reassessed 7-28 days following treatment. RESULTS: The frequency of IFN-Îł responders to PfMSP5 was similar in acute falciparum (63%) or vivax (67%) malaria. However, significantly more IFN-Îł-secreting cells were detectable during vivax compared with falciparum infection. Purified protein derivative responses showed a similarly enhanced pattern. While rapidly lost in vivax patients, PfMSP5-specific responses in falciparum malaria remained to day 28. By contrast, frequency and magnitude of lymphoproliferation to PfMSP5 were similar for falciparum and vivax infections. CONCLUSION: Cellular PfMSP5-specific responses are most frequent during either acute falciparum or vivax malaria, indicating functional T-cell responses to conserved antigens. Both effector and central memory T-cell functions are increased. Greater IFN-Îł responses in acute P. vivax, suggest enhancement of pre-existing effector T-cells during acute vivax infection
    • …
    corecore