338 research outputs found

    Detecting evolutionarily significant units above the species level using the generalised mixed Yule coalescent method

    Get PDF
    1. There is renewed interest in inferring evolutionary history by modelling diversification rates using phylogenies. Understanding the performance of the methods used under different scenarios is essential for assessing empirical results. Recently, we introduced a new approach for analysing broadscale diversity patterns, using the generalised mixed Yule coalescent (GMYC) method to test for the existence of evolutionarily significant units above the species (higher ESUs). This approach focuses on identifying clades as well as estimating rates, and we refer to it as clade-dependent. However, the ability of the GMYC to detect the phylogenetic signature of higher ESUs has not been fully explored, nor has it been placed in the context of other, clade-independent approaches. 2. We simulated >32 000 trees under two clade-independent models: constant-rate birth-death (CRBD) and variable-rate birth-death (VRBD), using parameter estimates from nine empirical trees and more general parameter values. The simulated trees were used to evaluate scenarios under which GMYC might incorrectly detect the presence of higher ESUs. 3. The GMYC null model was rejected at a high rate on CRBD-simulated trees. This would lead to spurious inference of higher ESUs. However, the support for the GMYC model was significantly greater in most of the empirical clades than expected under a CRBD process. Simulations with empirically derived parameter values could therefore be used to exclude CRBD as an explanation for diversification patterns. In contrast, a VRBD process could not be ruled out as an alternative explanation for the apparent signature of hESUs in the empirical clades, based on the GMYC method alone. Other metrics of tree shape, however, differed notably between the empirical and VRBD-simulated trees. These metrics could be used in future to distinguish clade-dependent and clade-independent models. 4. In conclusion, detection of higher ESUs using the GMYC is robust against some clade-independent models, as long as simulations are used to evaluate these alternatives, but not against others. The differences between clade-dependent and clade-independent processes are biologically interesting, but most current models focus on the latter. We advocate more research into clade-dependent models for broad diversity patterns

    ALMA High-frequency Long Baseline Campaign in 2021: Highest Angular Resolution Submillimeter Wave Images for the Carbon-rich Star R Lep

    Full text link
    The Atacama Large Millimeter/submillimeter Array (ALMA) was used in 2021 to image the carbon-rich evolved star R Lep in Bands 8-10 (397-908 GHz) with baselines up to 16 km. The goal was to validate the calibration, using band-to-band (B2B) phase referencing with a close phase calibrator J0504-1512, 1.2 deg from R Lep in this case, and the imaging procedures required to obtain the maximum angular resolution achievable with ALMA. Images of the continuum emission and the hydrogen cyanide (HCN) maser line at 890.8 GHz, from the J=10-9 transition between the (1110) and (0400) vibrationally excited states, achieved angular resolutions of 13, 6, and 5 mas in Bands 8-10, respectively. Self-calibration (self-cal) was used to produce ideal images as to compare with the B2B phase referencing technique. The continuum emission was resolved in Bands 9 and 10, leaving too little flux for self-cal of the longest baselines, so these comparisons are made at coarser resolution. Comparisons showed that B2B phase referencing provided phase corrections sufficient to recover 92%, 83%, and 77% of the ideal image continuum flux densities. The HCN maser was sufficiently compact to obtain self-cal solutions in Band 10 for all baselines (up to 16 km). In Band 10, B2B phase referencing as compared to the ideal images recovered 61% and 70% of the flux density for the HCN maser and continuum, respectively.Comment: 37 pages, 12 figures, 9 tables, accepted by ApJ (Aug 30, 2023

    LES-based Study of the Roughness Effects on the Wake of a Circular Cylinder from Subcritical to Transcritical Reynolds Numbers

    Get PDF
    This paper investigates the effects of surface roughness on the flow past a circular cylinder at subcritical to transcritical Reynolds numbers. Large eddy simulations of the flow for sand grain roughness of size k/D = 0.02 are performed (D is the cylinder diameter). Results show that surface roughness triggers the transition to turbulence in the boundary layer at all Reynolds numbers, thus leading to an early separation caused by the increased momentum deficit, especially at transcritical Reynolds numbers. Even at subcritical Reynolds numbers, boundary layer instabilities are triggered in the roughness sublayer and eventually lead to the transition to turbulence. The early separation at transcritical Reynolds numbers leads to a wake topology similar to that of the subcritical regime, resulting in an increased drag coefficient and lower Strouhal number. Turbulent statistics in the wake are also affected by roughness; the Reynolds stresses are larger due to the increased turbulent kinetic energy production in the boundary layer and separated shear layers close to the cylinder shoulders.We acknowledge “Red Española de Surpercomputación” (RES) for awarding us access to the MareNostrum III machine based in Barcelona, Spain (Ref. FI-2015-2-0026 and FI-2015-3-0011). We also acknowledge PRACE for awarding us access to Fermi and Marconi Supercomputers at Cineca, Italy (Ref. 2015133120). Oriol Lehmkuhl acknowledges a PDJ 2014 Grant by AGAUR (Generalitat de Catalunya). Ugo Piomelli acknowledges the support of the Natural Sciences and Engineering Research Council (NSERC) of Canada under the Discovery Grant Programme (Grant No. RGPIN-2016-04391). Ricard Borrell acknowledges a Juan de la Cierva postdoctoral grant (IJCI-2014-21034). Ivette Rodriguez, Oriol Lehmkuhl, Ricard Borrell and Assensi Oliva acknowledge Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación, Spain (ref. ENE2014-60577-R).Peer ReviewedPostprint (author's final draft

    Key stages in mammary gland development - Involution: apoptosis and tissue remodelling that convert the mammary gland from milk factory to a quiescent organ

    Get PDF
    Involution of the mammary gland is an essential process that removes the milk-producing epithelial cells when they become redundant at weaning. It is a two-step process that involves the death of the secretory epithelium and its replacement by adipo-cytes. During the first phase, remodelling is inhibited and apoptotic cells can be seen in the lumena of the alveoli. In the second phase, apoptosis is accompanied by remodelling of the surrounding stroma and re-differentiation of the adipocytes. Considerable effort has been directed towards understanding the molecular mechanisms of the involution process and this has resulted in the identification of the principal signalling pathways involved

    Atypical disengagement from faces and its modulation by the control of eye fixation in children with Autism Spectrum Disorder

    Get PDF
    By using the gap overlap task, we investigated disengagement from faces and objects in children (9–17 years old) with and without autism spectrum disorder (ASD) and its neurophysiological correlates. In typically developing (TD) children, faces elicited larger gap effect, an index of attentional engagement, and larger saccade-related event-related potentials (ERPs), compared to objects. In children with ASD, by contrast, neither gap effect nor ERPs differ between faces and objects. Follow-up experiments demonstrated that instructed fixation on the eyes induces larger gap effect for faces in children with ASD, whereas instructed fixation on the mouth can disrupt larger gap effect in TD children. These results suggest a critical role of eye fixation on attentional engagement to faces in both groups

    A novel class of microRNA-recognition elements that function only within open reading frames.

    Get PDF
    MicroRNAs (miRNAs) are well known to target 3' untranslated regions (3' UTRs) in mRNAs, thereby silencing gene expression at the post-transcriptional level. Multiple reports have also indicated the ability of miRNAs to target protein-coding sequences (CDS); however, miRNAs have been generally believed to function through similar mechanisms regardless of the locations of their sites of action. Here, we report a class of miRNA-recognition elements (MREs) that function exclusively in CDS regions. Through functional and mechanistic characterization of these 'unusual' MREs, we demonstrate that CDS-targeted miRNAs require extensive base-pairing at the 3' side rather than the 5' seed; cause gene silencing in an Argonaute-dependent but GW182-independent manner; and repress translation by inducing transient ribosome stalling instead of mRNA destabilization. These findings reveal distinct mechanisms and functional consequences of miRNAs that target CDS versus the 3' UTR and suggest that CDS-targeted miRNAs may use a translational quality-control-related mechanism to regulate translation in mammalian cells

    Hybridization in human evolution: Insights from other organisms

    Full text link
    During the late Pleistocene, isolated lineages of hominins exchanged genes thus influencing genomic variation in humans in both the past and present. However, the dynamics of this genetic exchange and associated phenotypic consequences through time remain poorly understood. Gene exchange across divergent lineages can result in myriad outcomes arising from these dynamics and the environmental conditions under which it occurs. Here we draw from our collective research across various organisms, illustrating some of the ways in which gene exchange can structure genomic/phenotypic diversity within/among species. We present a range of examples relevant to questions about the evolution of hominins. These examples are not meant to be exhaustive, but rather illustrative of the diverse evolutionary causes/consequences of hybridization, highlighting potential drivers of human evolution in the context of hybridization including: influences on adaptive evolution, climate change, developmental systems, sex-differences in behavior, Haldane’s rule and the large X-effect, and transgressive phenotypic variation.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151330/1/evan21787.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151330/2/evan21787_am.pd
    corecore