7,509 research outputs found
The efficiency factorization multiplier for the Watson efficiency in partitioned linear models: some examples and a literature review
We consider partitioned linear models where the model matrix X = (X1 : X2) has
full column rank, and concentrate on the special case whereX0
1X2 = 0 when we say
that the model is orthogonally partitioned. We assume that the underlying covariance
matrix is positive definite and introduce the efficiency factorization multiplier which
relates the total Watson efficiency of ordinary least squares to the product of the
two subset Watson efficiencies. We illustrate our findings with several examples and
present a literature review
Improvement of NADPH bioavailability in Escherichia coli through the use of phosphofructokinase deficient strains
NADPH-dependent reactions play important roles
in production of industrially valuable compounds. In this
study, we used phosphofructokinase (PFK)-deficient strains
to direct fructose-6-phosphate to be oxidized through the
pentose phosphate pathway (PPP) to increase NADPH generation.
pfkA or pfkB single deletion and double-deletion strains
were tested for their ability to produce lycopene. Since lycopene
biosynthesis requires many NADPH, levels of lycopene
were compared in a set of isogenic strains, with the pfkA single
deletion strain showing the highest lycopene yield. Using
another NADPH-requiring process, a one-step reduction reaction
of 2-chloroacrylate to 2-chloropropionic acid by 2-
haloacrylate reductase, the pfkA pfkB double-deletion strain
showed the highest yield of 2-chloropropionic acid product.
The combined effect of glucose-6-phosphate dehydrogenase
overexpression or lactate dehydrogenase deletion with PFK
deficiency on NADPH bioavailability was also studied. The
results indicated that the flux distribution of fructose-6-
phosphate between glycolysis and the pentose phosphate
pathway determines the amount of NAPDH available for
reductive biosynthesis
Evaluation of deformed image-based dose calculations for adaptive radiotherapy of nasopharyngeal carcinoma
The ultimate goal of adaptive radiotherapy (ART) is to deliver truly customized radiation treatments. Currently, the quality of cone-beam computed tomography (CBCT) images is still inferior to that of conventional CT images in contour delineations and dose calculations for replanning purposes. This retrospective study aims to evaluate the dosimetric accuracy of using deformed conventional CT images for dose calculations, in the hope of inferring the feasibility of ART using planning CT (PCT) images that deformed to up-to-date CBCT images for patients with nasopharyngeal carcinoma (NPC). Thirty consecutive patients with NPC who had undergone 1 replan in their radiotherapy treatments were selected. The pretreatment PCT images were deformed to match the mid-treatment PCT images by deformable image registration. The same volumetric modulated arc therapy plan was then calculated on the deformed PCT images. The resulting dose distributions and dose volume histograms of the tumors and organs at risk (OARs) were compared with the original plan. Five dose levels, D98%, D95%, D50%, D5%, and D2%, were recorded for 9 NPC targets. Four dose levels, Dmax, D10%, D50%, and Dmean, were recorded for 15 OARs. The greatest percentage difference in observed dose for D98%, D95%, D50%, D5%, and D2% of the targets were 1.71%, 1.55%, 0.64%, 0.97%, and 1.13%, respectively. The greatest percentage difference in observed dose for Dmax, D10%, D50%, and Dmean of the OARs were -26.51% (left optic nerve), -17.06% (left optic nerve), 56.70% (spinal cord), and 18.97% (spinal cord), respectively. In addition, 29 of 45 (64%) dosimetric end points of the targets showed statistically significant dose differences (p < 0.05) between the original plan and the plan calculated on deformed images. Forty-nine of 60 (82%) dosimetric end points of the OARs also showed statistically significant dose differences (p < 0.05). Dose calculations using deformed PCT images could result in significant dose uncertainties in target volumes and OARs. Larger dose deviations were found in OARs in comparison with target volumes. The spinal cord and optic nerve showed the greatest percentage dose differences and the clinical significance has yet to be determined. Deformable registration error was believed to be the problem causing the dose deviations. Owing to unknown clinical significanceof dose deviation results obtained from this study, a conventional CT scan is still required for replanning in patients with NPC who are experiencing significant anatomical changes during the course of radiation treatment. [Abstract copyright: Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Outbreak of West Nile virus causing severe neurological involvement in children, Nuba Mountains, Sudan, 2002.
An atypical outbreak of West Nile virus (WNV) occurred in Ngorban County, South Kordophan, Sudan, from May to August 2002. We investigated the epidemic and conducted a case-control study in the village of Limon. Blood samples were obtained for cases and controls. Patients with obvious sequelae underwent cerebrospinal fluid (CSF) sampling as well. We used enzyme-linked immunosorbent assay (ELISA) and neutralization tests for laboratory diagnosis and identified 31 cases with encephalitis, four of whom died. Median age was 36 months. Bivariate analysis did not reveal any significant association with the risk factors investigated. Laboratory analysis confirmed presence of IgM antibodies caused by WNV in eight of 13 cases, indicative of recent viral infection. The unique aspects of the WNW outbreak in Sudan, i.e. disease occurrence solely among children and the clinical domination of encephalitis, involving severe neurological sequelae, demonstrate the continuing evolution of WNV virulence. The spread of such a virus to other countries or continents cannot be excluded
The importance of early arthroscopy in athletes with painful cartilage lesions of the ankle: a prospective study of 61 consecutive cases
BACKGROUND
Ankle sprains are common in sports and can sometimes result in a persistent pain condition.
PURPOSE
Primarily to evaluate clinical symptoms, signs, diagnostics and outcomes of surgery for symptomatic chondral injuries of the talo crural joint in athletes. Secondly, in applicable cases, to evaluate the accuracy of MRI in detecting these injuries. Type of study: Prospective consecutive series.
METHODS
Over around 4 years we studied 61 consecutive athletes with symptomatic chondral lesions to the talocrural joint causing persistent exertion ankle pain.
RESULTS
43% were professional full time athletes and 67% were semi-professional, elite or amateur athletes, main sports being soccer (49%) and rugby (14%). The main subjective complaint was exertion ankle pain (93%). Effusion (75%) and joint line tenderness on palpation (92%) were the most common clinical findings. The duration from injury to arthroscopy for 58/61 cases was 7 months (5.7–7.9). 3/61 cases were referred within 3 weeks from injury. There were in total 75 cartilage lesions. Of these, 52 were located on the Talus dome, 17 on the medial malleolus and 6 on the Tibia plafond. Of the Talus dome injuries 18 were anteromedial, 14 anterolateral, 9 posteromedial, 3 posterolateral and 8 affecting mid talus. 50% were grade 4 lesions, 13.3% grade 3, 16.7% grade 2 and 20% grade 1. MRI had been performed pre operatively in 26/61 (39%) and 59% of these had been interpreted as normal. Detection rate of cartilage lesions was only 19%, but subchondral oedema was present in 55%. At clinical follow up average 24 months after surgery (10–48 months), 73% were playing at pre-injury level. The average return to that level of sports after surgery was 16 weeks (3–32 weeks). However 43% still suffered minor symptoms.
CONCLUSION
Arthroscopy should be considered early when an athlete presents with exertion ankle pain, effusion and joint line tenderness on palpation after a previous sprain. Conventional MRI is not reliable for detecting isolated cartilage lesions, but the presence of subchondral oedema should raise such suspicion
Improvement of Insulin Sensitivity by Isoenergy High Carbohydrate Traditional Asian Diet: A Randomized Controlled Pilot Feasibility Study
The prevalence of diabetes is rising dramatically among Asians, with increased consumption of the typical Western diet as one possible cause. We explored the metabolic responses in East Asian Americans (AA) and Caucasian Americans (CA) when transitioning from a traditional Asian diet (TAD) to a typical Western diet (TWD), which has not been reported before. This 16-week randomized control pilot feasibility study, included 28AA and 22CA who were at risk of developing type 2 diabetes. Eight weeks of TAD were provided to all participants, followed by 8 weeks of isoenergy TWD (intervention) or TAD (control). Anthropometric measures, lipid profile, insulin resistance and inflammatory markers were assessed. While on TAD, both AA and CA improved in insulin AUC (−960.2 µU/mL×h, P = 0.001) and reduced in weight (−1.6 kg; P<0.001), body fat (−1.7%, P<0.001) and trunk fat (−2.2%, P<0.001). Comparing changes from TAD to TWD, AA had a smaller weight gain (−1.8 to 0.3 kg, P<0.001) than CA (−1.4 to 0.9 kg, P = 0.001), but a greater increase in insulin AUC (AA: −1402.4 to 606.2 µU/mL×h, P = 0.015 vs CA: −466.0 to 223.5 µU/mL×h, P = 0.034) and homeostatic static model assessment-insulin resistance (HOMA-IR) (AA: −0.3 to 0.2, P = 0.042 vs CA: −0.1 to 0.0, P = 0.221). Despite efforts to maintain isoenergy state and consumption of similar energy, TAD induced weight loss and improved insulin sensitivity in both groups, while TWD worsened the metabolic profile. Trial Registration: ClinicalTrials.gov NCT0037954
Twinning superlattices in indium phosphide nanowires
Here, we show that we control the crystal structure of indium phosphide (InP)
nanowires by impurity dopants. We have found that zinc decreases the activation
barrier for 2D nucleation growth of zinc-blende InP and therefore promotes the
InP nanowires to crystallise in the zinc blende, instead of the commonly found
wurtzite crystal structure. More importantly, we demonstrate that we can, by
controlling the crystal structure, induce twinning superlattices with
long-range order in InP nanowires. We can tune the spacing of the superlattices
by the wire diameter and the zinc concentration and present a model based on
the cross-sectional shape of the zinc-blende InP nanowires to quantitatively
explain the formation of the periodic twinning.Comment: 18 pages, 4 figure
Site-specific perturbations of alpha-synuclein fibril structure by the Parkinson's disease associated mutations A53T and E46K.
PMCID: PMC3591419This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Parkinson's disease (PD) is pathologically characterized by the presence of Lewy bodies (LBs) in dopaminergic neurons of the substantia nigra. These intracellular inclusions are largely composed of misfolded α-synuclein (AS), a neuronal protein that is abundant in the vertebrate brain. Point mutations in AS are associated with rare, early-onset forms of PD, although aggregation of the wild-type (WT) protein is observed in the more common sporadic forms of the disease. Here, we employed multidimensional solid-state NMR experiments to assess A53T and E46K mutant fibrils, in comparison to our recent description of WT AS fibrils. We made de novo chemical shift assignments for the mutants, and used these chemical shifts to empirically determine secondary structures. We observe significant perturbations in secondary structure throughout the fibril core for the E46K fibril, while the A53T fibril exhibits more localized perturbations near the mutation site. Overall, these results demonstrate that the secondary structure of A53T has some small differences from the WT and the secondary structure of E46K has significant differences, which may alter the overall structural arrangement of the fibrils
Psychological interventions in asthma
Asthma is a multifactorial chronic respiratory disease characterised by recurrent episodes of airway obstruction. The current management of asthma focuses principally on pharmacological treatments, which have a strong evidence base underlying their use. However, in clinical practice, poor symptom control remains a common problem for patients with asthma. Living with asthma has been linked with psychological co-morbidity including anxiety, depression, panic attacks and behavioural factors such as poor adherence and suboptimal self-management. Psychological disorders have a higher-than-expected prevalence in patients with difficult-to-control asthma. As psychological considerations play an important role in the management of people with asthma, it is not surprising that many psychological therapies have been applied in the management of asthma. There are case reports which support their use as an adjunct to pharmacological therapy in selected individuals, and in some clinical trials, benefit is demonstrated, but the evidence is not consistent. When findings are quantitatively synthesised in meta-analyses, no firm conclusions are able to be drawn and no guidelines recommend psychological interventions. These inconsistencies in findings may in part be due to poor study design, the combining of results of studies using different interventions and the diversity of ways patient benefit is assessed. Despite this weak evidence base, the rationale for psychological therapies is plausible, and this therapeutic modality is appealing to both patients and their clinicians as an adjunct to conventional pharmacological treatments. What are urgently required are rigorous evaluations of psychological therapies in asthma, on a par to the quality of pharmaceutical trials. From this evidence base, we can then determine which interventions are beneficial for our patients with asthma management and more specifically which psychological therapy is best suited for each patient
Collaborative Gaze Channelling for Improved Cooperation During Robotic Assisted Surgery
The use of multiple robots for performing complex tasks is becoming a common practice for many robot applications. When different operators are involved, effective cooperation with anticipated manoeuvres is important for seamless, synergistic control of all the end-effectors. In this paper, the concept of Collaborative Gaze Channelling (CGC) is presented for improved control of surgical robots for a shared task. Through eye tracking, the fixations of each operator are monitored and presented in a shared surgical workspace. CGC permits remote or physically separated collaborators to share their intention by visualising the eye gaze of their counterparts, and thus recovers, to a certain extent, the information of mutual intent that we rely upon in a vis-à-vis working setting. In this study, the efficiency of surgical manipulation with and without CGC for controlling a pair of bimanual surgical robots is evaluated by analysing the level of coordination of two independent operators. Fitts' law is used to compare the quality of movement with or without CGC. A total of 40 subjects have been recruited for this study and the results show that the proposed CGC framework exhibits significant improvement (p<0.05) on all the motion indices used for quality assessment. This study demonstrates that visual guidance is an implicit yet effective way of communication during collaborative tasks for robotic surgery. Detailed experimental validation results demonstrate the potential clinical value of the proposed CGC framework. © 2012 Biomedical Engineering Society.link_to_subscribed_fulltex
- …
