12 research outputs found

    Antimicrobial host defense peptides in an arteriviral infection: differential peptide expression and virus inactivation

    No full text
    Antimicrobial host defense peptides (AHDPs) are effective against a wide range of microbes, including viruses. The arteriviral infection caused by porcine reproductive and respiratory syndrome virus (PRRSV) is a devastating pandemic that causes the most economically significant disease of swine. We sought to determine if the expression of AHDPs was influenced by infection with PRRSV, and if porcine AHDPs have direct antiviral activity against PRRSV. Because pulmonary alveolar macrophages (PAMs) are primary targets of PRRSV infection, gene expression of porcine AHDPs was evaluated in lungs from fetal and 2-wk-old congenitally infected pigs. In PRRSV-positive lungs and PAMs, gene expression of most porcine AHDPs showed little upregulation. However, gene expression of porcine β-defensin-1 (pBD-1), pBD-4, pBD-104, pBD-123, and pBD-125 were downregulated more than threefold in 2-wk-old congenitally infected pig lungs. Incubation of PRRSV with pBD-3 or PG-4 significantly inhibited viral infectivity in MARC-145 cells. Using nine protegrin or protegrin-derived peptides, we determined that a cyclic analog of PG-4 increased anti-PRRSV activity, and that substitution of phenylalanine with valine eliminated most PG-4 antiviral activity. In PAMs, pBD-3 and PG-4 at 5–40 μg/mL consistently suppressed PRRSV titers. Collectively, these findings suggest a potential role for some porcine AHDPs as innate antiviral effectors in PRRSV infection. Moreover, modulation of porcine innate immune mechanisms with AHDPs may be one means of limiting the impact of this costly pandemic viral disease

    Genome-wide analysis of antiviral signature genes in porcine macrophages at different activation statuses

    Get PDF
    Macrophages (MФs) can be polarized to various activation statuses, including classical (M1), alternative (M2), and antiviral states. To study the antiviral activation status of porcine MФs during porcine reproductive and respiratory syndrome virus (PRRSV) infection, we used RNA Sequencing (RNA-Seq) for transcriptomic analysis of differentially expressed genes (DEGs). Sequencing assessment and quality evaluation showed that our RNA-Seq data met the criteria for genome-wide transcriptomic analysis. Comparisons of any two activation statuses revealed more than 20,000 DEGs that were normalized to filter out 153–5,303 significant DEGs [false discovery rate (FDR) ≤0.001, fold change ≥2] in each comparison. The highest 5,303 significant DEGs were found between lipopolysaccharide- (LPS) and interferon (IFN)γ-stimulated M1 cells, whereas only 153 significant DEGs were detected between interleukin (IL)-10-polarized M2 cells and control mock-activated cells. To identify signature genes for antiviral regulation pertaining to each activation status, we identified a set of DEGs that showed significant up-regulation in only one activation state. In addition, pathway analyses defined the top 20–50 significantly regulated pathways at each activation status, and we further analyzed DEGs pertinent to pathways mediated by AMP kinase (AMPK) and epigenetic mechanisms. For the first time in porcine macrophages, our transcriptomic analyses not only compared family-wide differential expression of most known immune genes at different activation statuses, but also revealed transcription evidence of multiple gene families. These findings show that using RNA-Seq transcriptomic analyses in virus-infected and status-synchronized macrophages effectively profiled signature genes and gene response pathways for antiviral regulation, which may provide a framework for optimizing antiviral immunity and immune homeostasis

    Use of 55 PET radiotracers under approval of a Radioactive Drug Research Committee (RDRC)

    No full text

    Heat Stress and Immune Function

    No full text
    corecore