766 research outputs found

    Instanton operators in five-dimensional gauge theories

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are creditedN.L. is supported in part by STFC grant ST/J002798/1. C.P. is a Royal Society Research Fellow.N.L. is supported in part by STFC grant ST/J002798/1. C.P. is a Royal Society Research Fellow.N.L. is supported in part by STFC grant ST/J002798/1. OPen Aceess funded by SCOAP

    Nonlocal Charges for Bonus Yangian Symmetries of Super-Yang-Mills

    Full text link
    The existence of a "bonus" U(1) level-one Yangian symmetry of N=4 super-Yang-Mills has recently been proposed. We provide evidence for this proposal by constructing the BRST-invariant nonlocal charge in the pure spinor sigma model corresponding to this bonus level-one symmetry. We also construct analogous charges for bonus U(1) symmetries at all odd levels of the Yangian.Comment: LaTeX 16p

    5d quivers and their AdS(6) duals

    Get PDF
    We consider an infinite class of 5d supersymmetric gauge theories involving products of symplectic and unitary groups that arise from D4-branes at orbifold singularities in Type I' string theory. The theories are argued to be dual to warped AdS(6)x S4/Zn backgrounds in massive Type IIA supergravity. In particular, this demonstrates the existence of supersymmetric 5d fixed points of quiver type. We analyze the spectrum of gauge fields and charged states in the supergravity dual, and find a precise agreement with the symmetries and charged operators in the quiver theories. We also comment on other brane objects in the supergravity dual and their interpretation in the field theories.Comment: 29 pages, 15 figure

    Supersymmetry Breaking in Chern-Simons-matter Theories

    Full text link
    Some of supersymmetric Chern-Simons theories are known to exhibit supersymmetry breaking when the Chern-Simons level is less than a certain number. The mechanism of the supersymmetry breaking is, however, not clear from the field theory viewpoint. In this paper, we discuss vacuum states of N=2{\cal N}=2 pure Chern-Simons theory and N=2{\cal N}=2 Chern-Simons-matter theories of quiver type using related theories in which Chern-Simons terms are replaced with (anti-)fundamental chiral multiplets. In the latter theories, supersymmetry breaking can be shown to occur by examining that the vacuum energy is non-zero.Comment: 17 pages, 3 figures, v2) references adde

    Static Charges in the Low-Energy Theory of the S-Duality Twist

    Full text link
    We continue the study of the low-energy limit of N=4 super Yang-Mills theory compactified on a circle with S-duality and R-symmetry twists that preserve N=6 supersymmetry in 2+1D. We introduce external static supersymmetric quark and anti-quark sources into the theory and calculate the Witten Index of the resulting Hilbert space of ground states on a torus. Using these results we compute the action of simple Wilson loops on the Hilbert space of ground states without sources. In some cases we find disagreement between our results for the Wilson loop eigenvalues and previous conjectures about a connection with Chern-Simons theory.Comment: 73 pages, two paragraphs added, one to the introduction and one to the discussio

    Metastable Vacua and the Backreacted Stenzel Geometry

    Full text link
    We construct an M-theory background dual to the metastable state recently discussed by Klebanov and Pufu, which corresponds to placing a stack of anti-M2 branes at the tip of a warped Stenzel space. With this purpose we analytically solve for the linearized non-supersymmetric deformations around the warped Stenzel space, preserving the SO(5) symmetries of the supersymmetric background, and which interpolate between the IR and UV region. We identify the supergravity solution which corresponds to a stack of Nˉ\bar{N} backreacting anti-M2 branes by fixing all the 12 integration constants in terms of Nˉ\bar{N}. While in the UV this solution has the desired features to describe the conjectured metastable state of the dual (2+1)-dimensional theory, in the IR it suffers from a singularity in the four-form flux, which we describe in some details.Comment: 33 pages, 3 figure

    Generating new dualities through the orbifold equivalence: a demonstration in ABJM and four-dimensional quivers

    Full text link
    We show that the recently proposed large NN equivalence between ABJM theories with Chern-Simons terms of different rank and level, U(N_1)_{k_1}\times U(N_1)_{-k_1} and U(N_2)_{k_2}\times U(N_2)_{-k_2}, but the same value of N' =N_1 k_1=N_2 k_2, can be explained using planar equivalence in the mirror duals. The combination of S-dualities and orbifold equivalence can be applied to other cases as well, with very appealing results. As an example we show that two different quiver theories with k nodes can be easily shown to be Seiberg dual through the orbifold equivalence, but it requires order k^2 steps to give a proof when Seiberg duality is performed node by node.Comment: 18 pages, 7 figures, minor changes and references adde

    From Necklace Quivers to the F-theorem, Operator Counting, and T(U(N))

    Full text link
    The matrix model of Kapustin, Willett, and Yaakov is a powerful tool for exploring the properties of strongly interacting superconformal Chern-Simons theories in 2+1 dimensions. In this paper, we use this matrix model to study necklace quiver gauge theories with {\cal N}=3 supersymmetry and U(N)^d gauge groups in the limit of large N. In its simplest application, the matrix model computes the free energy of the gauge theory on S^3. The conjectured F-theorem states that this quantity should decrease under renormalization group flow. We show that for a simple class of such flows, the F-theorem holds for our necklace theories. We also provide a relationship between matrix model eigenvalue distributions and numbers of chiral operators that we conjecture holds more generally. Through the AdS/CFT correspondence, there is therefore a natural dual geometric interpretation of the matrix model saddle point in terms of volumes of 7-d tri-Sasaki Einstein spaces and some of their 5-d submanifolds. As a final bonus, our analysis gives us the partition function of the T(U(N)) theory on S^3.Comment: 3 figures, 41 pages; v2 minor improvements, refs adde

    Phases of planar 5-dimensional supersymmetric Chern-Simons theory

    Full text link
    In this paper we investigate the large-NN behavior of 5-dimensional N=1\mathcal{N}=1 super Yang-Mills with a level kk Chern-Simons term and an adjoint hypermultiplet. As in three-dimensional Chern-Simons theories, one must choose an integration contour to completely define the theory. Using localization, we reduce the path integral to a matrix model with a cubic action and compute its free energy in various scenarios. In the limit of infinite Yang-Mills coupling and for particular choices of the contours, we find that the free-energy scales as N5/2N^{5/2} for U(N)U(N) gauge groups with large values of the Chern-Simons 't\,Hooft coupling, λ~≡N/k\tilde\lambda\equiv N/k. If we also set the hypermultiplet mass to zero, then this limit is a superconformal fixed point and the N5/2N^{5/2} behavior parallels other fixed points which have known supergravity duals. We also demonstrate that SU(N)SU(N) gauge groups cannot have this N5/2N^{5/2} scaling for their free-energy. At finite Yang-Mills coupling we establish the existence of a third order phase transition where the theory crosses over from the Yang-Mills phase to the Chern-Simons phase. The phase transition exists for any value of λ~\tilde\lambda, although the details differ between small and large values of λ~\tilde\lambda. For pure Chern-Simons theories we present evidence for a chain of phase transitions as λ~\tilde\lambda is increased. We also find the expectation values for supersymmetric circular Wilson loops in these various scenarios and show that the Chern-Simons term leads to different physical properties for fundamental and anti-fundamental Wilson loops. Different choices of the integration contours also lead to different properties for the loops.Comment: 40 pages, 17 figures, Minor corrections, Published versio
    • …
    corecore