2 research outputs found
A low-voltage retarding-field Mott polarimeter for photocathode characterization
Nuclear physics experiments at Thomas Jefferson National Accelerator
Facility's CEBAF rely on high polarization electron beams. We describe a
recently commissioned system for prequalifying and studying photocathodes for
CEBAF with a load-locked, low-voltage polarized electron source coupled to a
compact retarding-field Mott polarimeter. The polarimeter uses simplified
electrode structures and operates from 5 to 30 kV. The effective Sherman
function for this device has been calibrated by comparison with the CEBAF 5 MeV
Mott polarimeter. For elastic scattering from a thick gold target at 20 keV,
the effective Sherman function is 0.201(5). Its maximum efficiency at 20 keV,
defined as the detected count rate divided by the incident particle current, is
5.4(2) x 10-4, yielding a figure-of-merit, or analyzing power squared times
efficiency, of 1.0(1) x 10-5. The operating parameters of this new polarimeter
design are compared to previously published data for other compact Mott
polarimeters of the retarding-field type.Comment: 9 figure
A low-voltage retarding-field Mott polarimeter for photocathode characterization
Nuclear physics experiments at Thomas Jefferson National Accelerator Facility’s CEBAF rely on high polarization electron beams. We describe a recently commissioned system for prequalifying and studying photocathodes for CEBAF with a load-locked, low-voltage polarized electron source coupled to a compact retarding-field Mott polarimeter. The polarimeter uses simplified electrode structures and operates from 5 to 30 kV. The effective Sherman function for this device has been calibrated by comparison with the CEBAF 5 MeV Mott polarimeter. For elastic scattering from a thick gold target at 20 keV, the effective Sherman function is 0.201(5). Its maximum efficiency at 20 keV, defined as the detected count rate divided by the incident particle current, is 5.4(2)×10-4, yielding a figure-of-merit, or analyzing power squared times efficiency, of 1.0(1)×10-5. The operating parameters of this new polarimeter design are compared to previously published data for other compact Mott polarimeters of the retarding-field type