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a b s t r a c t

Nuclear physics experiments at Thomas Jefferson National Accelerator Facility’s CEBAF rely on high

polarization electron beams. We describe a recently commissioned system for prequalifying and

studying photocathodes for CEBAF with a load-locked, low-voltage polarized electron source coupled to

a compact retarding-field Mott polarimeter. The polarimeter uses simplified electrode structures and

operates from 5 to 30 kV. The effective Sherman function for this device has been calibrated by

comparison with the CEBAF 5 MeV Mott polarimeter. For elastic scattering from a thick gold target at

20 keV, the effective Sherman function is 0.201(5). Its maximum efficiency at 20 keV, defined as the

detected count rate divided by the incident particle current, is 5.4(2)�10�4, yielding a figure-of-merit,

or analyzing power squared times efficiency, of 1.0(1)�10�5. The operating parameters of this new

polarimeter design are compared to previously published data for other compact Mott polarimeters of

the retarding-field type.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Nuclear physics experiments have come to rely on high
polarization electron beams, and place stringent demands on
the electron source. In particular, beam requirements at Thomas
Jefferson National Accelerator Facility’s CEBAF (Continuous Elec-
tron Beam Accelerator Facility) include polarization over 80% and
average current capability of at least 100mA. Access to the CEBAF
polarimeters for photocathode research is constrained by the
experimental schedule. Previous offline photocathode polariza-
tion research at Jefferson Lab was performed using a 100 kV
vertical electron gun and conventional Mott polarimeter, which
required extensive radiation shielding and a personal safety
system. We describe here a simple, load-locked, low-voltage
polarized electron source used in conjunction with a newly
designed compact, retarding-field Mott polarimeter which
enables photocathode pre-qualification for the CEBAF injector as

well as polarization characterization of novel photocathode
materials.

2. Polarized electron source

The polarized electron source is an ultra-high vacuum system
where GaAs photocathodes are heated and then activated to a
negative electron affinity state using cesium and an oxidant.
When illuminated with circularly polarized light at energies
just over the band gap, activated GaAs emits longitudinally
polarized electrons [1,2]. Fig. 1 shows a SIMION [3] model of the
beam trajectory through the source with typical bias voltages
for each electrostatic element noted. The photocathode (element
a in Fig. 1) is biased at �268 V with respect to the Mott
polarimeter target using a battery bias box, and photocurrent is
monitored with a picoammeter. Since Mott scattering detects
an asymmetry for transversely polarized electrons, the spin
direction of the initially longitudinally polarized electron beam
direction must be bent 901. This is accomplished using an
electrostatic bend (elements b and c) of the design developed
by Al-Khateeb et al. [4]. The beam is then focused and steered
using one split lens (elements f and g) and two cylindrical lenses
[5] (elements e and h) to the Mott polarimeter for polarization
analysis.
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For photoemission, we use a fixed (773 or 840 nm) or variable
(�770–780 nm) wavelength laser, or a monochromator which
produces un-collimated light at wavelengths from 650 to 850 nm.
An x–y translational stage allows movement of the laser beam
while maintaining normal incidence to the photocathode, and an
optical attenuator system varies laser power and subsequent
photocurrent. The final optical element is a quarter-wave plate to
circularly polarize the light. The computerized data acquisition
program controls a laser shutter and an insertable half-wave plate
which is used to change the helicity of the circularly polarized
laser light and to help cancel instrumental asymmetries.

New photocathodes are introduced into the source using a
load-lock system, and a bake of the load-locked bellows at 250 1C
for 12 h allows samples to be changed within a day. The
photocathode is mounted on a hollow stainless steel ‘‘stalk’’
where the GaAs is heated to a surface temperature of �550 1C for
2 h using an external heater prior to chemical activation with Cs
and the oxidant NF3 (though O2 could be used instead). An 800

diameter stainless steel chamber houses the polarized source and
is pumped with a combination of ion and non-evaporable getter
pumps [6]. To achieve pressure in the low UHV regime, the
polarimeter was initially baked in a hot air oven for 30 h at 200 1C,
which is the limit for the Teflon insulators in the lens transport
system and the CEM support structure. During the bake, a sheet
metal wall separates the hot air oven into two sections so that the
source chamber can be heated to nearly 250 1C to further reduce
the water vapor pressure and activate the NEG pumps to
approximately 60% of their maximum pump speed. The combina-
tion of NEG and ion pumps typically achieves pressure in the low
10�11 Torr range, leading to a very long photocathode lifetime,
with reactivations necessary every few months.

The polarized source is coupled to the Mott polarimeter
through a 3.2 mm diameter aperture on centerline to define the
beam. The source lens system is separated from the Mott lens
transport system by 15 cm, and an isolated planar electrode can
be inserted after the aperture before the Mott transport system to
monitor the current that enters the lens transport system.

3. Mott polarimetry

Our Mott polarimeter has a particularly simple design, shown
in Fig. 2, with no electrode structures except the inner high-
voltage hemisphere and the grounded outer hemisphere, which in
turn supports simplified retarding-field grids. Its hemispherical
structure is similar to a ‘‘mini-Mott’’ design reported earlier [7],

but is smaller and simpler, eliminating guard rings and other
ancillary electrodes. It is also similar to a micro-Mott design
discussed briefly by Ciccacci et al. [8] that is somewhat larger. The
electrode structure supports voltages at least as high as our 30 kV
power supply maximum.

Many parameters have historically been used to characterize
Mott polarimeters. Because incident electron currents are often
low, the polarimeter’s detection efficiency, defined as the electron
detection rate divided by the incident electron current, I/Io, is
important. In addition, experiments requiring spin analysis of
scattered electrons often place severe spatial constraints on the
size of the polarimeters that can be used [9,10]. So-called ‘‘micro-
Mott polarimeters’’, developed largely at Rice University by
Dunning and co-workers [11–14] over the last two decades, solve
these two issues simultaneously by reducing polarimeter size; as
a rule of thumb, the detection efficiencies of Mott polarimeters
vary inversely with their size, since the chief factor in determining
efficiency is the effective solid angle subtended by the electron
detectors at the Mott scattering target. The figure of merit, Z, for a
Mott polarimeter is inversely proportional to the square of the
time required to measure polarization to a given statistical
accuracy [9,15] and is defined as

Z� ðSeff Þ
2
� I=Io, ð1Þ

where Seff is the effective Sherman function or polarimetric
analyzing power given by

Seff ¼ A=Pe, ð2Þ

Pe is the electron polarization, and

A¼
R�L

RþL
ð3Þ

is the scattering asymmetry, with the values of R and L

corresponding to the count rates in the ‘‘left’’ and ‘‘right’’ electron
detectors of the Mott polarimeter. Generally speaking, as the
detection solid angle, and thus the ratio I/Io, increases, Seff

decreases.

3.1. Polarimeter design

Electrons that enter the polarimeter are accelerated to energies
from 5 to 30 keV between two hemispherical stainless steel
electrodes supported on a ceramic insulator (see Fig. 2). Electrons
scatter from a gold target (5mm of gold plated on a copper
cylinder) inside the inner hemisphere. In principle, the target
could be biased negatively relative to the inner hemisphere to
suppress noise due to ions accelerated into the detectors [16]. This
was not done, as no ion-related noise was observed. The vacuum
chamber serves as adequate radiation shielding at 30 kV for
typical operating currents up to 100 nA on target. Scattered
electrons are decelerated in the gap between the inner and outer
hemispheres and detected with channel electron multipliers
(CEMs) [17], each subtending 0.27 sr, centered at 1201. To reduce
the chance of electrical discharge, the outer surface of the inner
hemisphere was highly polished (mirror finish with 5 micro-inch
rms surface roughness), and the aperture holes in both hemi-
spheres were rounded and polished. Two gold mesh [18] grids in
front of each CEM, separated by 3.5 mm, establish a spatially well-
defined retarding potential volume and reject inelastically
scattered electrons. The grids are affixed to aluminum support
rings using Aerodag [20] and isolated by ruby balls. As the
retarding potential is increased negatively from ground, electrons
that have lost energy through inelastic scattering are increasingly
excluded from the measurement; when the retarding potential
energy approaches that of the incident beam kinetic energy, only
the elastically scattered electrons are detected. In this paper, we

Fig. 1. SIMION model of beam transport through the polarized electron source

showing lenses and typical voltages in cross-section, with the three-dimensional

inset showing detail of the photocathode and ‘‘pusher’’ electrostatic bend. The

incident laser beam path and the SIMION modeled electron trajectories are labeled

d and i, respectively. The beam limiting aperture is labeled j, and k indicates the

insertable planar electrode for current monitoring.
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will use DE to refer to the greatest energy a scattered electron
can lose and still be detected. Thus, for an incident beam with
kinetic energy K and a retarding voltage on the grids equal to V,
DE¼K–jejV. The two-grid retarder design has been found to
provide better discrimination against inelastically scattered
electrons at small values of DE [19]. The polarimeter has four
detectors: the right/left pair is aligned to measure the Mott
scattering asymmetry and the up/down pair can be used to
measure any out-of-plane polarization due to physical mechan-
isms, instrumental asymmetries, or polarimeter misalignment.
Electrostatic tube lenses and deflectors [20] steer and focus the
incident electron beam into the polarimeter entrance aperture.

3.2. Signal processing

In order to determine the efficiency of the Mott analyzer
accurately, it is important to ensure that the signal pulses are
associated with true target-scattered electron events, and that
electronic dead time does not affect the result. Dead time issues
were addressed by operating in the regime where count rates
increased linearly with the incident beam current, and where
efficiency was steady. This occurred for target currents less than
50 pA at 5 kV target bias and count rates less than 1 MHz (see
Fig. 3). The operating voltages for the CEMs were determined by
both finding the point where a 100 V increase in bias produced
less than a 10% increase in count rate and using an oscilloscope to
ensure that the primary pulse peak height did not change. The
CEM high voltage [21] bias boxes are outside the vacuum
chamber, and each channel is in a separate metal housing to
reduce cross-talk. The capacitively coupled CEM output signal is
amplified with a pre-amp [22] placed immediately adjacent to the
bias box.

The discriminator [23] threshold was determined by measur-
ing both the asymmetry and signal-to-noise ratio as a function of

threshold voltage with DEE150 eV to eliminate the high count
rate from scattered electrons with the largest energy losses. Fig. 4
shows that discriminator thresholds of at least 250 mV are needed
for the signal/noise ratio and asymmetry to be independent of
discriminator threshold; thresholds of 400 mV were typically
used during data acquisition. Peak pulse heights were typically
over 1 V after amplification. The TTL pulses from the
discriminators were counted via a computerized DAQ program.

3.3. Asymmetry measurement

Polarized electrons are emitted from the GaAs photocathode in
two opposite polarization states depending on the handedness of

1

2

3

4 5

6

0 2 4 6 8 10
CENTIMETERS

Fig. 2. Scale cross-section drawing of polarimeter showing: (1) 800 Conflats mounting flange with 23/400 ports for high-voltage bushings and feedthroughs; (2) insulating

standoff and mounting plate; (3) outer hemisphere; (4) highly polished stainless steel inner hemisphere; (5) target screwed into high voltage electrode; (6) channel

electron multiplier in housing attached to retarding-field grid assembly.

Fig. 3. Efficiency (I/I0) vs. target current at 5 keV target bias and DE¼268 eV (open

circles). Efficiency error bars are dominated by uncertainty in the current

measurement. Channel electron multiplier (CEM) count rate (closed circles) varies

linearly for target currents below 100 pA and rates below 1 MHz while counting

efficiency drops over 100 pA or 1 MHz (linear fit to data below 50 pA and extended

as a guide to the eye). Count rate was kept below 1 MHz (vertical dotted line)

during measurements to avoid electronic saturation effects.
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the incident circularly polarized light. Measuring count rates in
both the left (L) and right (R) detectors during both polarization
states, designated by subscripts of 1 and 2, allows cancellation of
many of the instrumental asymmetries [10]. With the definition
Nþ ¼

ffiffiffiffiffiffiffiffiffiffi
L1R2

p
and N� ¼

ffiffiffiffiffiffiffiffiffiffi
L1R2

p
, the asymmetry is given by

A¼
Nþ�N�

Nþ þN�
: ð4Þ

4. Results

4.1. Efficiency

Efficiency, I/I0, was measured by first biasing the target at
+300 V and measuring the incident current with a picoammeter,
then biasing the target at operating voltages up to 30 kV and
measuring CEM count rates. Maximum efficiency, with essentially
no rejection of inelastically scattered electrons, is shown as a
function of target bias in Fig. 5a. The monotonic decrease of
efficiency with increasing target voltage is a result of lowered
electron scattering cross-sections at higher incident energies.
The efficiency was measured using the same polarized electron
beam as is used for the asymmetry measurement, and was
determined as a function of DE for various target biases as shown
in Fig. 6a.

To verify that the target current at 300 V accurately represents
target current at higher biases, current was measured as a
function of target voltage using batteries up to 300 V and using
a high voltage power supply [24] with nanoamp current
sensitivity up to 7 kV (see Fig. 7). The slight increase in target
current with target bias can be attributed to an increase in the
number of secondary electrons produced at the target and
upstream apertures that return to the target at higher bias.

4.2. Effective Sherman function

The effective Sherman function, Seff, was determined by
generating electron beams from the same photocathode material
and laser wavelength as used in Jefferson Lab’s CEBAF polarized
electron source [25,26], and dividing the measured asymmetry by
the known beam polarization. These strained superlattice GaAs
photocathodes [27], which consist of 14 pairs of layers of GaAs
(4 nm) on GaAsP (3 nm), generate electron beams with polariza-
tion of 84% (71% statistical 71% systematic) when illuminated

with 778 nm light, as measured by the CEBAF 5 MeV Mott
polarimeter [28] and corroborated by the four polarimeters in
Jefferson Lab’s three experimental halls. This value is reproducible
across the photocathode diameter and between wafers. The Seff vs.
target bias is shown in Fig. 5b. A linear weighted average fit of Seff

vs. DE, using the range DE¼0–115 eV, was used to determine Seff

for DE¼0 since the count rates when DE¼0 are quite low. Fig. 6b
shows both data and fit for 20 and 30 kV target bias. Background
subtractions were made for both the residual rate with the light
off and the residual rate when the retarding field exceeded that
required to exclude elastically scattered electrons from the
detectors. The error bars reflect statistical uncertainty in the
asymmetry measurement as well as the 71% systematic and
71% statistical uncertainty (added linearly) in the CEBAF
polarization measurement. The average Sherman function for
20 kV and DE¼0 was found to be 0.20170.004. The polarization
in the vertical plane was measured for the same superlattice
photocathode material using the vertical CEMs. At 20 kV target
bias, the vertical component of asymmetry was 6.9% that of the
horizontal component, corresponding to a polarimeter misalign-
ment of 41. Including this vertical component would increase Seff

by only 0.0005, and was not included in the remaining calcula-
tions for the paper.

4.3. Photocathode material comparison

As a verification of the determination of Seff, polarization
measurements were also made using ‘‘bulk’’ GaAs wafers diced
from a single crystal [29], and ‘‘strained layer’’ photocathodes

Fig. 4. Asymmetry (circles) and CEM count rate with beam on (dashed line) and

beam off (dotted line) as a function of discriminator threshold. Ratio of beam-on to

beam-off count rate is indicated by the solid line (see text). Data shown is for 5 kV

with superlattice photocathode and 773 nm laser illumination.

Fig. 5. Variation as a function of target bias of the (a) efficiency, I/Io for

DE¼268 eV; (b) effective Sherman function for DE¼268 eV (open circles) and

extrapolated to DE¼0 eV (closed circles); and (c) the figure of merit, Z, for

DE¼268 eV.
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with a single 100 nm thick GaAs layer grown on a lattice-
mismatched substrate [30]. Fig. 8 shows polarization measure-
ments vs. target bias for the two materials, with data shown for
several cycles of photocathode replacement and beam re-steering.
The variation between nominally identical samples gives an
estimate of the random systematic error of the measurements,
approximately 73% of the value. Polarization of electrons from
strained GaAs measured at CEBAF is typically around 77%,
consistent with the measurements from this polarimeter. The
measured polarization of bulk GaAs can vary widely depending on
factors such as the substrate thickness and surface conditions, and

the measured polarizations near 30% for all target biases are
within expectations.

4.4. Wavelength dependence

Fig. 9 shows the wavelength dependence of both polarization
and quantum efficiency (QE) for a high polarization strained
superlattice GaAs/GaAsP photocathode [31] from 725 to 825 nm.
The broad peak in maximum polarization from 780 to 795 nm is
evident, and the results from this polarimeter are in good
agreement with data taken previously with the JLab 100 kV
vertical test stand Mott polarimeter using a wavelength tunable
Ti–Sapphire laser, shown by the solid line. For the longest
wavelengths, statistical error bars dominate due to the very
low QE.

4.5. Figure of merit

Figs. 5c and 6c show Z as a function of target bias and DE. Since
I/Io increases several orders of magnitude with DE and the
Sherman function decreases by less than a factor of two over the
same range, the highest Z is found at DE¼268 V, corresponding to
the incident beam energy. The measured Z was lower than that of
comparable polarimeters, as a result of the previously noted

Fig. 6. Variation, as a function DE, of (a) efficiency, I/Io; (b) effective Sherman

function, Seff, with weighted linear fit for extrapolation to DE¼0 eV; and (c) figure

of merit, Z. Filled circles correspond to target bias of 20 kV; open circles to 30 kV.

Fig. 7. Target current as a function of target bias relative to that measured with

the target grounded, with currents typically on the order of 100 nA (see text).

Fig. 8. Measured electron polarization vs. target bias. Solid line indicates

superlattice polarization of 84% used to determine Seff. Strained layer data:

squares measured February 2008, open diamonds July 2008, solid diamonds

September 2008. Bulk GaAs: open circles measured September 2008, solid circles

June 2008.

Fig. 9. Polarization (closed circles) and quantum efficiency (open diamonds)

plotted as a function of wavelength for a high polarization superlattice

photocathode. Polarization vs. wavelength data from the 100 kV vertical test

stand Mott polarimeter are shown by the solid line.
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decrease in efficiency, which outweighs the small increase in Seff

of this design.

5. Discussion

Table 1 compares the operating characteristics of all of the
‘‘micro-’’ and ‘‘mini-’’ Mott polarimeters reported in the literature
to date for which operating parameters are given. For the sake of
comparison, all operating characteristics were determined for
high-voltage operation at 20 kV, except where noted. Listed are
the maximum values of Seff, I/Io and Z reported, the Seff values
corresponding to the maximum reported efficiencies and figures-
of-merit, and the values of DE corresponding to all these
quantities. Also tabulated are estimates of the geometric
scattered electron acceptance solid angle per detector
(corresponding to straight-line trajectories from the target), and
the approximate cylindrical volume of each device.

Some general statements can be made as a result of these
comparisons. Mini-Mott polarimeters are characterized by sizes
of the order of 104 cm3, while the smallest micro-Mott polari-
meters take up volumes less than 1.5�103 cm3. The mini-Mott
polarimeters generally have higher values of Seff for all values of
DE due to their more restricted angular scattering acceptance.

Despite the fairly large acceptance of the present polarimeter
(smaller only than those of Refs. [9,38]), both I/Io and the
corresponding Z are quite small. This may be due in large part
to the fact that we were limited in this experiment to DEr270
eV; SIMION analyses do not indicate a significant non-geometric
rejection of scattered electron trajectories by our analyzer.

More direct comparisons can be made between our polari-
meter and those reported in Refs. [13,14], as they provide Seff, I/Io

and Z results as a function of DE. While the sizes and detection
solid angles of these devices are comparable to ours, both of the
other polarimeters used Th targets, whereas our target was Au. To
facilitate a direct comparison, we have used the results of Oro
et al. [32] and McClelland et al. [33] who studied the values of Seff

for both targets at 20 keV as a function of DE. Our scaled values of
Seff are given in the last row of Table 1. Using the results of
Browning et al. [34] and Czyżewski et al. [35], we take I/Io to scale
roughly as the atomic number of the target; our I/Io and Z values
extrapolated to Th are also shown in the last row of Table 1. With
these assumptions in place, and for DE¼268 eV, our device has

Seff¼17%, as opposed to values of 23% and 25% for Refs. [13,14]
(extrapolated to DE¼268 eV). Given that our detection solid angle
is nominally 20% greater than those of the Rice polarimeters, this
is not terribly surprising. However, the values of I/Io for the Rice
detectors (again extrapolated to DE¼268 eV) are roughly 3–4
times larger than those for our device, with comparably larger
values of Z. This result is not understood at this time, but it does
not present a serious problem in terms of studying high-current
photocathodes.

6. Conclusions

We have commissioned a simple micro-Mott polarimeter/
polarized electron source system for photocathode characteriza-
tion for which the chief benefits are rapid sample changes,
simplicity of construction, versatility of operation, and small size.
Its operation range is 5–30 kV, eliminating the radiation hazards
present with Jefferson Lab’s previous offline polarimeter. The
polarimeter’s analyzing power, or ‘‘effective Sherman function’’,
Seff, has been calibrated through a comparison with Jefferson Lab’s
CEBAF 5 MeV Mott polarimeter by measuring polarization from
the same high-polarization photocathode material with both
devices. The present design has analyzing power and efficiency
comparable to early designs of micro-Mott polarimeters. In
comparison with state-of-the-art designs, it has a comparable
analyzing power, but significantly lower efficiency and subse-
quent figure-of-merit. This lower efficiency, which cannot be
understood simply in terms of detector acceptance, is not a
problem for this system, which is intended to characterize high-
current photocathodes. The polarized source in conjunction with
the compact, retarding-field Mott polarimeter is a valuable tool
for off-line photocathode pre-qualification and novel photo-
cathode polarization research for the Jefferson Lab Center for
Injectors and Sources.
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Table 1
Comparison of various mini-Mott and micro-Mott designs at 20 kV with Au targets.

Ref. Laboratory Max. Seff

(%)
DE (eV) Max. I/Io

(10�4)
DE (eV) Seff at

max. I/Io

(%)

Max.
g (10�5)

DE (eV) Seff at
max. g
(%)

DX (sr) Volume
(103 cm3)

Notes

[7] Rice 26 0 14 1300 12 ~2 1300 12 0.02 8.5

[14] Rice 23 400 53 1000 16 13 400 23 0.21 1.1 a

[13] Rice 21 300 94 1500 9 12 700 15 0.25 2.9 b

[12] Rice 11 1300 �20 1300 11 2.4 1300 11 0.11 2

[11] Rice 11 1300 22 1300 11 2.7 1300 11 0.09 4.2

[36] Münster 25 0 0.02 9.3

[37] Irvine 20 500 6.7 1000 14 1.4 1000 14 ? ? c

[9] Taiwan 13 700 ~2 0.60 ? d

[38] Tokyo 13 600 195 1400 10 18 1200 10 0.57 1.2

[39] St. Pet. 4.5 0.06 1.3 e

[8] Edinburgh 9 1300 0.06 2.2

This work 20 0 5.4 268 13.5 1.0 268 13.5 0.27 1.4

This work Th adj. 27 0 6.2 268 17 1.8 268 17

a Th target; 25 keV; max Z occurs over range of DE from 400 to 1000 eV.
b Th target.
c U target.
d 23 keV.
e 30 keV; Refs. [13,14] indicate little change in Z between 20 and 25 keV at 1300 eV.
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References

[1] D.T. Pierce, F. Meier, P. Zurcher, Appl. Phys. Lett. 26 (1975) 670.
[2] C.K. Sinclair, et al., PRSTAB 10 (2007) 023501.
[3] SIMION code used for modeling charged particle trajectories. /http://simion.

com/S.
[4] H.M. Al-Khateeb, B.G. Birdsey, T.C. Bowen, A.S. Green, T.J. Gay, et al., Rev. Sci.

Instrum. 70 (1999) 3882.
[5] T.G. Anderson, B.G. Birdsey, S.M. Woeher, M.A. Rosenberry, T.J. Gay, Rev. Sci.

Instrum. 72 (2001) 2923.
[6] Physical Electronics Ti-Tan CV ion pumps and SAES ST707 getter material,

WP750 configuration, removed from insulated housing and set in bottom of
chamber.

[7] L.G. Gray, M.W. Hart, F.B. Dunning, G.K. Walters, Rev. Sci. Instrum. 55 (1984) 88.
[8] F. Ciccacci, S. De Rossi, D.M. Campbell, Rev. Sci. Instrum. 66 (1995) 4161.
[9] D.J. Huang, W.P. Wu, J. Chen, C.F. Chang, S.C. Chung, M. Yuri, H.-J. Lin, P.D.

Johnson, C.T. Chen, Rev. Sci. Instrum. 73 (2002) 3778.
[10] T.J. Gay, F.B. Dunning, Rev. Sci. Instrum. 63 (1992) 1635.
[11] F.B. Dunning, L.G. Gray, J.M. Ratliff, F.-C. Tang, X. Zhang, G.K. Walters, Rev. Sci.

Instrum. 58 (1987) 1706.
[12] F.-C. Tang, X. Zhang, F.B. Dunning, G.K. Walters, Rev. Sci. Instrum. 59 (1988)

504.
[13] G.C. Burnett, T.J. Monroe, F.B. Dunning, Rev. Sci. Instrum. 65 (1994) 1893.
[14] D.D. Neufeld, H. Aliabadi, F.B. Dunning, Rev. Sci. Instrum. 78 (2007) 025107.
[15] J. Kessler, Polarized Electrons, 2nd ed., Springer-Verlag, Berlin, Germany,

1985, p. 242,243.
[16] L.A. Hodge, T.J. Moravec, F.B. Dunning, G.K. Walters, Rev. Sci. Instrum 50

(1979) 5.
[17] Channel electron multiplier type KBL 18RS, Dr. Sjuts Optotechnik GmbH

Goettingen, Germany.
[18] Gold mesh grid from Precision E-forming LLC, Cortland, NY. 80 wires/inch,

0.01152 spacing; 0.0009800 diameter; 85.0% transmission.
[19] T.J. Gay, M.A. Khakoo, J.A. Brand, J.E. Furst, W.V. Meyer, W.M.K.P. Wijayaratna,

F.B. Dunning, Rev. Sci. Instrum. 63 (1992) 114.
[20] Lenses were made of Aerodag-coated aluminum to avoid charge buildup on

the native aluminum oxide; Aerodag aerosol colloidal graphite coating,
Acheson Industries /ww.achesonindustries.comS.

[21] CEMs were biased with either two Bertan 375x or one two-channel LeCroy
N471 NIM crate-mounted high voltage supplies.

[22] Ortec VT120a preamplifier.
[23] Phillips 6930 discriminator.
[24] Ion pump power supply designed at Jefferson Lab to measure currents

o 10�8 A. This particular supply has been modified to have variable voltage
bias between 500–7000 V, adjusted manually J. Hansknecht, P. Adderley, M.L.
Stutzman, M. Poelker, AIP Conf. Proc. 1149 (2009) 1143.

[25] C.K. Sinclair, P.A. Adderley, B.M. Dunham, J.C. Hansknecht, P. Hartmann, M.
Poelker, J.S. Price, P.M. Rutt, W.J. Schneider, M. Steigerwald, Phys. Rev. Spec.
Top. Accel. Beams 10 (2007) 023501;
M. Baylac, P. Adderley, J. Brittian, J. Clark, T. Day, J. Grames, J. Hansknecht, M.
Poelker, M. Stutzman, A.T. Wu, A.S. Terekhov, Phys. Rev. Spec. Top. Accel.
Beams 8 (2005) 123501.

[26] C. Leemann, D. Douglas, G. Krafft, Annu. Rev. Nucl. Part. Sci. 51 (2001)
413.

[27] T. Maruyama, D.-A. Luh, A. Brachmann, J.E. Clendenin, E.L. Garwin, S. Harvey,
J. Jiang, R.E. Kirby, C.Y. Prescott, R. Prepost, A.M. Moy, Appl. Phys. Lett. 85
(2004) 2640.

[28] J.M. Grames, et al., Phys. Rev. Spec. Top. Accel. Beams 7 (2004) 042802.
[29] GaAs epi-ready single crystal, 100 orientation, Zn doped 5�1018 carrier

concentration from AXT Corporation. /www.axt.comS, Fremont, CA.
[30] T. Maruyama, E.L. Garwin, R. Prepost, G.H. Zapalac, Phys. Rev. B 46 (1992)

4261.
[31] Superlattice structure as described in M. Baylac, et al. in Ref. 25 but with the

addition of an amorphous arsenic cap. Superlattice material grown by SVT
Associates, Eden Prairie, Minnesota.

[32] D.M. Oro, W.H. Butler, F.-C. Tang, G.K. Walters, F.B. Dunning, Rev. Sci. Instrum.
62 (1991) 667.

[33] J.J. McClelland, M.R. Scheinfein, D.T. Pierce, Rev. Sci. Instrum. 60 (1989)
683.

[34] R. Browning, T.Z. Li, B. Chui, Jun Ye, R.E.W. Pease, Z. Czyżewski, D.C. Joy,
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