33 research outputs found

    Coherent dynamics of a Josephson charge qubit

    Get PDF
    We have fabricated a Josephson charge qubit by capacitively coupling a single-Cooper-pair box (SCB) to an electrometer based upon a single-electron transistor configured for radio-frequency readout (RF-SET). Charge quantization of 2e is observed and microwave spectroscopy is used to extract the Josephson and charging energies of the box. We perform coherent manipulation of the SCB by using very fast DC pulses and observe quantum oscillations in time of the charge that persist to ~=10ns. The observed contrast of the oscillations is high and agrees with that expected from the finite E_J/E_C ratio and finite rise-time of the DC pulses. In addition, we are able to demonstrate nearly 100% initial charge state polarization. We also present a method to determine the relaxation time T_1 when it is shorter than the measurement time T_{meas}.Comment: accepted for publication in Phys. Rev.

    Single-shot measurement of the Josephson charge qubit

    Full text link
    We demonstrate single-shot readout of quantum states of the Josephson charge qubit. The quantum bits are transformed into and stored as classical bits (charge quanta) in a dynamic memory cell - a superconducting island. The transformation of state |1> (differing form state |0> by an extra Cooper pair) is a result of a controllable quasiparticle tunneling to the island. The charge is then detected by a conventional single-electron transistor, electrostatically decoupled from the qubit. We study relaxation dynamics in the system and obtain the readout efficiency of 87% and 93% for |1> and |0> states, respectively.Comment: submitted to Rapid Communications of Phys. Rev. B (february 2004

    Noise and Measurement Efficiency of a Partially Coherent Mesoscopic Detector

    Full text link
    We study the noise properties and efficiency of a mesoscopic resonant-level conductor which is used as a quantum detector, in the regime where transport through the level is only partially phase coherent. We contrast models in which detector incoherence arises from escape to a voltage probe, versus those in which it arises from a random time-dependent potential. Particular attention is paid to the back-action charge noise of the system. While the average detector current is similar in all models, we find that its noise properties and measurement efficiency are sensitive both to the degree of coherence and to the nature of the dephasing source. Detector incoherence prevents quantum limited detection, except in the non-generic case where the source of dephasing is not associated with extra unobserved information. This latter case can be realized in a version of the voltage probe model.Comment: 15 pages, 5 figures; revised dicussion of voltage probe model

    Numerical analysis of the radio-frequency single-electron transistor operation

    Full text link
    We have analyzed numerically the response and noise-limited charge sensitivity of a radio-frequency single-electron transistor (RF-SET) in a non-superconducting state using the orthodox theory. In particular, we have studied the performance dependence on the quality factor Q of the tank circuit for Q both below and above the value corresponding to the impedance matching between the coaxial cable and SET.Comment: 14 page

    The electron capture in 163Ho experiment – ECHo

    Full text link

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Desmacella austini sp. nov. from sponge reefs off the Pacific coast of Canada

    No full text
    A new species of a very thinly encrusting Desmacella (Porifera, Demospongiae, Poecilosclerida, Desmacellidae) is described from Queen Charlotte Basin and Georgia Basin, off the Canadian Pacific coast. It is compared with all known species of the genus, differing in the geometry and size of spicules, and the persistent epizoic growth

    Josephson charge qubits:a brief review

    Get PDF
    The field of solid-state quantum computation is expanding rapidly initiated by our original charge qubit demonstrations. Various types of solid-state qubits are being studied, and their coherent properties are improving. The goal of this review is to summarize achievements on Josephson charge qubits. We cover the results obtained in our joint group of NEC Nano Electronics Research Laboratories and RIKEN Advanced Science Institute, also referring to the works done by other groups. Starting from a short introduction, we describe the principle of the Josephson charge qubit, its manipulation and readout. We proceed with coupling of two charge qubits and implementation of a logic gate. We also discuss decoherence issues. Finally, we show how a charge qubit can be used as an artificial atom coupled to a resonator to demonstrate lasing action
    corecore