446 research outputs found

    Fuzzy linear assignment problem: an approach to vehicle fleet deployment

    Get PDF
    This paper proposes and examines a new approach using fuzzy logic to vehicle fleet deployment. Fleet deployment is viewed as a fuzzy linear assignment problem. It assigns each travel request to an available service vehicle through solving a linear assignment matrix of defuzzied cost entries. Each cost entry indicates the cost value of a travel request that "fuzzily aggregates" multiple criteria in simple rules incorporating human dispatching expertise. The approach is examined via extensive simulations anchored in a representative scenario of taxi deployment, and compared to the conventional case of using only distances (each from the taxi position to the source point and finally destination point of a travel request) as cost entries. Discussion in the context of related work examines the performance and practicality of the proposed approach

    Modulation of Ca2+-dependent anion secretion by protein kinase C in normal and cystic fibrosis pancreatic duct cells

    Get PDF
    AbstractThe study investigated the role of protein kinase C (PKC) in the modulation of agonist-induced Ca2+-dependent anion secretion by pancreatic duct cells. The short-circuit current (ISC) technique was used to examine the effect of PKC activation and inhibition on subsequent ATP, angiotensin II and ionomycin-activated anion secretion by normal (CAPAN-1) and cystic fibrosis (CFPAC-1) pancreatic duct cells. The ISC responses induced by the Ca2+-mobilizing agents, which had been previously shown to be attributed to anion secretion, were enhanced in both CAPAN-1 and CFPAC-1 cells by PKC inhibitors, staurosporine, calphostin C or chelerythrine. On the contrary, a PKC activator, phorbol 12-myristate 13-acetate (PMA), was found to suppress the agonist-induced ISC in CFPAC-1 cells and the ionomycin-induced ISC in CAPAN-1 cells. An inactive form of PMA, 4αd-phorbol 12,13-didecanote (4αD), was found to exert insignificant effect on the agonist-induced ISC, indicating a specific effect of PMA. Our data suggest a role of PKC in modulating agonist-induced Ca2+-dependent anion secretion by pancreatic duct cells. Therapeutic strategy to augment Ca2+-activated anion secretion by cystic fibrosis pancreatic duct cells may be achieved by inhibition or down-regulation of PKC

    Notes on some plant collections from Bachok and several forest reserves in Kelantan

    Get PDF
    A botanical survey of Bachok and various forest reserves at Jeram Linang, Jeram Pasu and Bukit Bakar was part of an expedition from 14–20 June 2008 carried out by the IOES (Institute of Ocean and Earth Sciences) University of Malaya to survey and prepare an inventory of the biodiversity of the coastal region around Bachok, Kelantan. A total of 54 species from 30 families, consisting of seashore and mangrove plants were identified from the coastal area of Bachok and Semerak; while 89 species of flowering plants representing 44 families, a single gymnosperm, Agathis borneensis (Araucariaceae); and 15 genera and 23 species of mosses (from 10 families) were recorded in the three forest reserves. Several of the species collected were rarely found outside Kelantan. Satu survei tumbuhan di Bachok dan beberapa hutan simpanan termasuk Jeram Linang, Jeram Pasu dan Bukit Bakar, Kelantan adalah sebahagian ekspedisi survei biodiversiti kawasan pantai di sekitar Bachok Kelantan oleh IOES (Institute of Ocean and Earth Sciences) Universiti Malaya pada 14–20 Jun 2008. Sejumlah 54 spesies daripada 30 famili tumbuhan pantai dan bakau dikenalpasti dari kawasan pantai Bachok dan Semerak; sedangkan 89 spesies tumbuhan berbunga (mewakili 44 famili), satu gimnosperma, Agathis borneensis (Araucariaceae); serta 15 genera dan 23 spesies daripada 10 famili lumut sejati telah direkodkan di kawasan sekitar Jeram Linang, Jeram Pasu dan Hutan Lipur Bukit Bakar. Beberapa spesies yang dikutip adalah jarang ditemui di luar Kelantan

    In vitro antiviral activity of medicinal mushroom Ganoderma neo-japonicum Imazeki against enteroviruses that caused hand, foot and mouth disease

    Get PDF
    Hand, foot and mouth disease (HFMD) is a highly contagious viral disease that predominantly affects children younger than 5 years old. HFMD is primarily caused by enterovirus A71 (EVA71) and coxsackievirus A16 (CV-A16). However, coxsackievirus A10 (CV-A10) and coxsackievirus A6 (CV-A6) are being increasingly reported as the predominant causative of HFMD outbreaks worldwide since the past decade. To date, there are still no licensed multivalent vaccines or antiviral drugs targeting enteroviruses that cause HFMD, despite HFMD outbreaks are still being frequently reported, especially in Asia-Pacific countries. The high rate of transmission, morbidity and potential neurological complications of HFMD is indeed making the development of broad-spectrum antiviral drugs/agents against these enteroviruses a compelling need. In this study, we have investigated the in vitro antiviral effect of 4 Ganoderma neo-japonicum Imazeki (GNJI) crude extracts (S1-S4) against EV-A71, CV-A16, CV-A10 and CV-A6. GNJI is a medicinal mushroom that can be found growing saprophytically on decaying bamboo clumps in Malaysian forests. The antiviral effects of this medicinal mushroom were determined using cytopathic inhibition and virus titration assays. The S2 (1.25 mg/ml) hot aqueous extract demonstrated the highest broad-spectrum antiviral activity against all tested enteroviruses in human primary oral fibroblast cells. Replication of EV-A71, CV-A16 and CVA10 were effectively inhibited at 2 hours post-infection (hpi) to 72 hpi, except for CV-A6 which was only at 2 hpi. S2 also has virucidal activity against EV-A71. Polysaccharides isolated and purified from crude hot aqueous extract demonstrated similar antiviral activity as S2, suggesting that polysaccharides could be one of the active compounds responsible for the antiviral activity shown by S2. To our knowledge, this study demonstrates for the first time the ability of GNJI to inhibit enterovirus infection and replication. Thus, GNJI is potential to be further developed as an antiviral agent against enteroviruses that caused HFMD

    Closed-Time Path Integral Formalism and Medium Effects of Non-Equilibrium QCD Matter

    Get PDF
    We apply the closed-time path integral formalism to study the medium effects of non-equilibrium gluon matter. We derive the medium modified resummed gluon propagator to the one loop level in non-equilibrium in the covariant gauge. The gluon propagator we derive can be used to remove the infrared divergences in the secondary parton collisions to study thermalization of minijet parton plasma at RHIC and LHC.Comment: Final version, To appear in Physical Review D, Minor modification, reference adde

    Real-time nonequilibrium dynamics in hot QED plasmas: dynamical renormalization group approach

    Get PDF
    We study the real-time nonequilibrium dynamics in hot QED plasmas implementing a dynamical renormalization group and using the hard thermal loop (HTL) approximation. The focus is on the study of the relaxation of gauge and fermionic mean fields and on the quantum kinetics of the photon and fermion distribution functions. For semihard photons of momentum eT << k << T we find to leading order in the HTL that the gauge mean field relaxes in time with a power law as a result of infrared enhancement of the spectral density near the Landau damping threshold. The dynamical renormalization group reveals the emergence of detailed balance for microscopic time scales larger than 1/k while the rates are still varying with time. The quantum kinetic equation for the photon distribution function allows us to study photon production from a thermalized quark-gluon plasma (QGP) by off-shell effects. We find that for a QGP at temperature T ~ 200 MeV and of lifetime 10 < t < 50 fm/c the hard (k ~ T) photon production from off-shell bremsstrahlung (q -> q \gamma and \bar{q} -> \bar{q}\gamma) at O(\alpha) grows logarithmically in time and is comparable to that produced from on-shell Compton scattering and pair annihilation at O(\alpha \alpha_s). Fermion mean fields relax as e^{-\alpha T t ln(\omega_P t)} with \omega_P=eT/3 the plasma frequency, as a consequence of the emission and absorption of soft magnetic photons. A quantum kinetic equation for hard fermions is obtained directly in real time from a field theoretical approach improved by the dynamical renormalization group. The collision kernel is time-dependent and infrared finite.Comment: RevTeX, 46 pages, including 5 EPS figures, published versio

    Dynamical Renormalization Group Approach to Quantum Kinetics in Scalar and Gauge Theories

    Get PDF
    We derive quantum kinetic equations from a quantum field theory implementing a diagrammatic perturbative expansion improved by a resummation via the dynamical renormalization group. The method begins by obtaining the equation of motion of the distribution function in perturbation theory. The solution of this equation of motion reveals secular terms that grow in time, the dynamical renormalization group resums these secular terms in real time and leads directly to the quantum kinetic equation. We used this method to study the relaxation in a cool gas of pions and sigma mesons in the O(4) chiral linear sigma model. We obtain in relaxation time approximation the pion and sigma meson relaxation rates. We also find that in large momentum limit emission and absorption of massless pions result in threshold infrared divergence in sigma meson relaxation rate and lead to a crossover behavior in relaxation. We then study the relaxation of charged quasiparticles in scalar electrodynamics (SQED). While longitudinal, Debye screened photons lead to purely exponential relaxation, transverse photons, only dynamically screened by Landau damping lead to anomalous relaxation, thus leading to a crossover between two different relaxational regimes. We emphasize that infrared divergent damping rates are indicative of non-exponential relaxation and the dynamical renormalization group reveals the correct relaxation directly in real time. Finally we also show that this method provides a natural framework to interpret and resolve the issue of pinch singularities out of equilibrium and establish a direct correspondence between pinch singularities and secular terms. We argue that this method is particularly well suited to study quantum kinetics and transport in gauge theories.Comment: RevTeX, 40 pages, 4 eps figures, published versio
    corecore