269 research outputs found

    Mining State-Based Models from Proof Corpora

    Full text link
    Interactive theorem provers have been used extensively to reason about various software/hardware systems and mathematical theorems. The key challenge when using an interactive prover is finding a suitable sequence of proof steps that will lead to a successful proof requires a significant amount of human intervention. This paper presents an automated technique that takes as input examples of successful proofs and infers an Extended Finite State Machine as output. This can in turn be used to generate proofs of new conjectures. Our preliminary experiments show that the inferred models are generally accurate (contain few false-positive sequences) and that representing existing proofs in such a way can be very useful when guiding new ones.Comment: To Appear at Conferences on Intelligent Computer Mathematics 201

    Large non-Gaussianity from two-component hybrid inflation

    Full text link
    We study the generation of non-Gaussianity in models of hybrid inflation with two inflaton fields, (2-brid inflation). We analyse the region in the parameter and the initial condition space where a large non-Gaussianity may be generated during slow-roll inflation which is generally characterised by a large f_NL, tau_NL and a small g_NL. For certain parameter values we can satisfy tau_NL>>f_NL^2. The bispectrum is of the local type but may have a significant scale dependence. We show that the loop corrections to the power spectrum and bispectrum are suppressed during inflation, if one assume that the fields follow a classical background trajectory. We also include the effect of the waterfall field, which can lead to a significant change in the observables after the waterfall field is destabilised, depending on the couplings between the waterfall and inflaton fields.Comment: 16 pages, 6 figures; v2: comments and references added, typos corrected, matches published versio

    Muon anomalous magnetic moment in the standard model with two Higgs doublets

    Get PDF
    The muon anomalous magnetic moment is investigated in the standard model with two Higgs doublets (S2HDM) motivated from spontaneous CP violation. Thus all the effective Yukawa couplings become complex. As a consequence of the non-zero phase in the couplings, the one loop contribution from the neutral scalar bosons could be positive and negative relying on the CP phases. The interference between one and two loop diagrams can be constructive in a large parameter space of CP-phases. This will result in a significant contribution to muon anomalous magnetic moment even in the flavor conserving process with a heavy neutral scalar boson (mhm_h \sim 200 GeV) once the effective muon Yukawa coupling is large (ξμ50|\xi_\mu|\sim 50). In general, the one loop contributions from lepton flavor changing scalar interactions become more important. In particular, when all contributions are positive in a reasonable parameter space of CP phases, the recently reported 2.6 sigma experiment vs. theory deviation can be easily explained even for a heavy scalar boson with a relative small Yukawa coupling in the S2HDM.Comment: 8 pages, RevTex file, 5 figures, published version Phys. Rev. D 54 (2001) 11501

    Reach of the Fermilab Tevatron for minimal supergravity in the region of large scalar masses

    Full text link
    The reach of the Fermilab Tevatron for supersymmetric matter has been calculated in the framework of the minimal supergravity model in the clean trilepton channel. Previous analyses of this channel were restricted to scalar masses m_0<= 1 TeV. We extend the analysis to large values of scalar masses m_0\sim 3.5 TeV. This includes the compelling hyperbolic branch/focus point (HB/FP) region, where the superpotential \mu parameter becomes small. In this region, assuming a 5\sigma (3\sigma) signal with 10 (25) fb^{-1} of integrated luminosity, the Tevatron reach in the trilepton channel extends up to m_{1/2}\sim 190 (270) GeV independent of \tan\beta . This corresponds to a reach in terms of the gluino mass of m_{\tg}\sim 575 (750) GeV.Comment: 11 page latex file including 6 EPS figures; several typos corrected and references adde

    Supersymmetric Dark Matter and Yukawa Unification

    Get PDF
    An analysis of supersymmetric dark matter under the Yukawa unification constraint is given. The analysis utilizes the recently discovered region of the parameter space of models with gaugino mass nonuniversalities where large negative supersymmetric corrections to the b quark mass appear to allow bτb-\tau unification for a positive μ\mu sign consistent with the bs+γb\to s+\gamma and gμ2g_{\mu}-2 constraints. In the present analysis we use the revised theoretical determination of aμSMa_{\mu}^{SM} (aμ=(gμ2)/2a_{\mu}= (g_{\mu}-2)/2) in computing the difference aμexpaμSMa_{\mu}^{exp}-a_{\mu}^{SM} which takes account of a reevaluation of the light by light contribution which has a positive sign. The analysis shows that the region of the parameter space with nonuniversalities of the gaugino masses which allows for unification of Yukawa couplings also contains regions which allow satisfaction of the relic density constraint. Specifically we find that the lightest neutralino mass consistent with the relic density constraint, bτb\tau unification for SU(5) and btτb-t-\tau unification for SO(10) in addition to other constraints lies in the region below 80 GeV. An analysis of the maximum and the minimum neutralino-proton scalar cross section for the allowed parameter space including the effect of a new determination of the pion-nucleon sigma term is also given. It is found that the full parameter space for this class of models can be explored in the next generation of proposed dark matter detectors.Comment: 28 pages,nLatex including 5 fig

    Charged lepton Flavor Violation in Supersymmetry with Bilinear R-Parity Violation

    Get PDF
    The simplest unified extension of the Minimal Supersymmetric Standard Model with bi-linear R-parity violation naturally predicts a hierarchical neutrino mass spectrum, suitable to explain atmospheric and solar neutrino fluxes. We study whether the individual violation of the lepton numbers L_{e,mu,tau} in the charged sector can lead to measurable rates for BR(mu->e gamma)and $BR(tau-> mu gamma). We find that some of the R-parity violating terms that are compatible with the observed atmospheric neutrino oscillations could lead to rates for mu->e gamma measurable in projected experiments. However, the Delta m^2_{12} obtained for those parameters is too high to be compatible with the solar neutrino data, excluding therefore the possibility of having measurable rates for mu->e gamma in the model.Comment: 29 pages, 8 figures. Constraint from solar neutrino data included, conclusions changed respect v

    Phenomenology of flavor-mediated supersymmetry breaking

    Get PDF
    The phenomenology of a new economical SUSY model that utilizes dynamical SUSY breaking and gauge-mediation (GM) for the generation of the sparticle spectrum and the hierarchy of fermion masses is discussed. Similarities between the communication of SUSY breaking through a messenger sector, and the generation of flavor using the Froggatt-Nielsen (FN) mechanism are exploited, leading to the identification of vector-like messenger fields with FN fields, and the messenger U(1) as a flavor symmetry. An immediate consequence is that the first and second generation scalars acquire flavor-dependent masses, but do not violate FCNC bounds since their mass scale, consistent with effective SUSY, is of order 10 TeV. We define and advocate a minimal flavor-mediated model (MFMM), recently introduced in the literature, that successfully accommodates the small flavor-breaking parameters of the standard model using order one couplings and ratios of flavon field vevs. The mediation of SUSY breaking occurs via two-loop log-enhanced GM contributions, as well as several one-loop and two-loop Yukawa-mediated contributions for which we provide analytical expressions. The MFMM is parameterized by a small set of masses and couplings, with values restricted by several model constraints and experimental data. The next-to-lightest sparticle (NLSP) always has a decay length that is larger than the scale of a detector, and is either the lightest stau or the lightest neutralino. Similar to ordinary GM models, the best collider search strategies are, respectively, inclusive production of at least one highly ionizing track, or events with many taus plus missing energy. In addition, D^0 - \bar{D}^0 mixing is also a generic low energy signal. Finally, the dynamical generation of the neutrino masses is briefly discussed.Comment: 54 pages, LaTeX, 8 figure

    SUSY breaking mediation mechanisms and (g-2)_\mu, B -> X_s \gamma, B -> X_{s} l^+ l^- and B_s -> \mu^+ \mu^-

    Full text link
    We show that there are qualitative differences in correlations among (g2)μ(g-2)_{\mu}, BXsγB\to X_s \gamma, BXsl+lB \to X_{s} l^+ l^- and Bsμ+μB_s \to \mu^+ \mu^- in various SUSY breaking mediation mechanisms: minimal supergravity (mSUGRA), gauge mediation (GMSB), anomaly mediation (AMSB), gaugino mediation (g~\tilde{g}MSB), weakly and strongly interacting string theories, and DD brane models. After imposing the direct search limits on the Higgs boson and SUSY particle search limits and BXsγB\to X_s \gamma branching ratio, we find all the scenarios can accommodate the aμ(g2)μ/2a_\mu \equiv (g-2)_\mu /2 in the range of (a few tens)×1010\times 10^{-10}, and predict that the branching ratio for BXsl+lB\to X_s l^+ l^- can differ from the standard model (SM) prediction by ±20\pm 20 % but no more. On the other hand, the Bsμ+μB_s \to \mu^+ \mu^- is sensitive to the SUSY breaking mediation mechanisms through the pseudoscalar and stop masses (mAm_A and mt~1m_{\tilde{t}_1}), and the stop mixing angle. In the GMSB with a small messenger number, the AMSB, the g~\tilde{g}MSB and the noscale scenarios, one finds that B(Bsμ+μ)2×108B(B_s \to \mu^+ \mu^-) \lesssim 2 \times 10^{-8}, which is below the search limit at the Tevatron Run II. Only the mSUGRA or string inspired models can generate a large branching ratio for this decay.Comment: 40 pages, 21 figures (to appear in JHEP

    Proton irradiation of CVD diamond detectors for high-luminosity experiments at the LHC

    No full text
    CVD diamond shows promising properties for use as a position sensitive detector for experiments in the highest radiation areas at the Large Hadron Collider. In order to study the radiation hardn ess of diamond we exposed CVD diamond detector samples to 24~GeV/cc and 500~MeV protons up to a fluence of 5×1015 p/cm25\times 10^{15}~p/{\rm cm^2}. We measured the charge collection distance, the ave rage distance electron hole pairs move apart in an external electric field, and leakage currents before, during, and after irradiation. The charge collection distance remains unchanged up to 1 times1015 p/cm21\ times 10^{15}~p/{\rm cm^2} and decreases by \approx40~\% at 5×1015 p/cm25\times 10^{15}~p/{\rm cm^2}. Leakage currents of diamond samples were below 1~pA before and after irradiation. The particle indu ced currents during irradiation correlate well with the proton flux. In contrast to diamond, a silicon diode, which was irradiated for comparison, shows the known large increase in leakage curren t. We conclude that CVD diamond detectors are radiation hard to 24~GeV/cc and 500~MeV protons up to at least 1×1015 p/cm21\times 10^{15}~p/{\rm cm^2} without signal loss
    corecore