101 research outputs found

    Invisible Axions and Large-Radius Compactifications

    Get PDF
    We study some of the novel effects that arise when the QCD axion is placed in the ``bulk'' of large extra spacetime dimensions. First, we find that the mass of the axion can become independent of the energy scale associated with the breaking of the Peccei-Quinn symmetry. This implies that the mass of the axion can be adjusted independently of its couplings to ordinary matter, thereby providing a new method of rendering the axion invisible. Second, we discuss the new phenomenon of laboratory axion oscillations (analogous to neutrino oscillations), and show that these oscillations cause laboratory axions to ``decohere'' extremely rapidly as a result of Kaluza-Klein mixing. This decoherence may also be a contributing factor to axion invisibility. Third, we discuss the role of Kaluza-Klein axions in axion-mediated processes and decays, and propose several experimental tests of the higher-dimensional nature of the axion. Finally, we show that under certain circumstances, the presence of an infinite tower of Kaluza-Klein axion modes can significantly accelerate the dissipation of the energy associated with cosmological relic axion oscillations, thereby enabling the Peccei-Quinn symmetry-breaking scale to exceed the usual four-dimensional relic oscillation bounds. Together, these ideas therefore provide new ways of obtaining an ``invisible'' axion within the context of higher-dimensional theories with large-radius compactifications.Comment: 43 pages, LaTeX, 6 figure

    Doublet-Triplet Splitting and Fermion Masses with Extra Dimensions

    Get PDF
    The pseudo-Goldstone boson mechanism for the ``doublet-triplet splitting'' problem of the grand unified theory can be naturally implemented in the scenario with extra dimensions and branes. The two SU(6) global symmetries of the Higgs sector are located on two separate branes while the SU(6) gauge symmetry is in the bulk. After including several vector-like fields in the bulk, and allowing the most general interactions with their natural strength (including the higher dimensional ones which may be generated by gravity) which are consistent with the geometry, a realistic pattern of the Standard Model fermion masses and mixings can be naturally obtained without any flavor symmetry. Neutrino masses and mixings required for the solar and atmospheric neutrino problems can also be accommodated. The geometry of extra dimensions and branes provides another way to realize the absence of certain interactions (as required in the pseudo-Goldstone boson mechanism) or the smallness of some couplings (e.g., the Yukawa couplings between the fermions and the Higgs bosons), in addition to the usual symmetry arguments.Comment: 16 pages, 4 figures, LaTeX, references and some clarifying remarks added, to be published in Phys. Rev.

    Supersymmetry and Electroweak breaking from extra dimensions at the TeV-scale

    Get PDF
    We analyze some features of the role that extra dimensions, of radius RR in the TeV1^{-1} range, can play in the soft breaking of supersymmetry and the spontaneous breaking of electroweak symmetry. We use a minimal model where the gauge and Higgs sector of the MSSM are living in the bulk of five dimensions and the chiral multiplets in a four-dimensional boundary. Supersymmetry is broken in the bulk by the Scherk-Schwarz mechanism and transmitted to the boundary by radiative corrections. The particle spectrum is completely predicted as a function of a unique RR-charge. The massless sector corresponds to the pure Standard Model and electroweak symmetry is radiatively broken with a light Higgs weighing \simlt 110 GeV. The μ\mu-problem is solved and Higgsinos, gauginos and heavy Higgses acquire masses 1/R\sim 1/R. Chiral sfermions acquire radiative squared-masses αi/R2\sim \alpha_i/R^2. The effective potential is explicitly computed in the bulk of extra dimensions and some cosmological consequences can be immediately drawn from it. Gauge coupling running and unification is studied in the presence of Scherk-Schwarz supersymmetry breaking. The unification is similar to that in the supersymmetric theory.Comment: 27 pages, Latex, 7 figures. Minor change

    Cosmology of Brane Models with Radion Stabilization

    Get PDF
    We analyze the cosmology of the Randall-Sundrum model and that of compact brane models in general in the presence of a radius stabilization mechanism. We find that the expansion of our universe is generically in agreement with the expected effective four dimensional description. The constraint (which is responsible for the appearance of non-conventional cosmologies in these models) that must be imposed on the matter densities on the two branes in the theory without a stabilized radius is a consequence of requiring a static solution even in the absence of stabilization. Such constraints disappear in the presence of a stablizing potential, and the ordinary FRW (Friedmann-Robertson-Walker) equations are reproduced, with the expansion driven by the sum of the physical values of the energy densities on the two branes and in the bulk. For the case of the Randall-Sundrum model we examine the kinematics of the radion field, and find that corrections to the standard FRW equations are small for temperatures below the weak scale. We find that the radion field has renormalizable and unsuppressed couplings to Standard Model particles after electroweak symmetry breaking. These couplings may have important implications for collider searches. We comment on the possibility that matter off the TeV brane could serve as a dark matter candidate.Comment: 35 pages, Late

    Knockdown of zebrafish Nav1.6 sodium channel impairs embryonic locomotor activities

    Get PDF
    [[abstract]]Although multiple subtypes of sodium channels are expressed in most neurons, the specific contributions of the individual sodium channels remain to be studied. The role of zebrafish Nav1.6 sodium channels in the embryonic locomotor movements has been investigated by the antisense morpholino (MO) knockdown. MO1 and MO2 are targeted at the regions surrounding the translation start site of zebrafish Nav1.6 mRNA. MO3 is targeted at the RNA splicing donor site of exon 2. The correctly spliced Nav1.6 mRNA of MO3 morphants is 6% relative to that of the wild-type embryos. Nav1.6-targeted MO1, MO2 and MO3 attenuate the spontaneous contraction, tactile sensitivity, and swimming in comparison with a scrambled morpholino and mutated MO3 morpholino. No significant defect is observed in the development of slow muscles, the axonal projection of primary motoneurons, and neuromuscular junctions. The movement impairments caused by MO1, MO2, and MO3 suggest that the function of Nav1.6 sodium channels is essential on the normal early embryonic locomotor activities.[[notice]]補正完畢[[journaltype]]國

    Early- Onset Stroke and Vasculopathy Associated with Mutations in ADA2

    Get PDF
    Adenosine deaminase 2 (ADA2) is an enzyme involved in purine metabolism and a growth factor that influences the development of endothelial cells and leukocytes. This study shows that defects in ADA2 cause recurrent fevers, vascular pathologic features, and mild immunodeficiency. Patients with autoinflammatory disease sometimes present with clinical findings that encompass multiple organ systems.(1) Three unrelated children presented to the National Institutes of Health (NIH) Clinical Center with intermittent fevers, recurrent lacunar strokes, elevated levels of acute-phase reactants, livedoid rash, hepatosplenomegaly, and hypogammaglobulinemia. Collectively, these findings do not easily fit with any of the known inherited autoinflammatory diseases. Hereditary or acquired vascular disorders can have protean manifestations yet be caused by mutations in a single gene. Diseases such as the Aicardi-Goutieres syndrome,(2),(3) polypoidal choroidal vasculopathy,(4) sickle cell anemia,(5) livedoid vasculopathy,(6) and the small-vessel vasculitides(7),(8) are examples of systemic ...</p

    State of the climate in 2013

    Get PDF
    In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved

    The Physics of the B Factories

    Get PDF
    corecore