15 research outputs found
Fatigue testing and properties of hardmetals in the gigacycle range
Hardmetal products are frequently fatigue loaded in service, such as e.g. cutting tools for milling or percussion drills. In the present work, the fatigue behaviour of hardmetals was investigated into the gigacycle range using ultrasonic resonance fatigue testing at 20 kHz in push-pull mode at R = - 1. Liquid cooling was afforded using water with addition of a corrosion inhibitor. Hourglass shaped specimens were prepared, the surface being ground and polished with subsequent stress-relieving anneal to remove the high compressive residual stresses introduced during grinding. S-N curves with fairly low scatter were obtained, which indicates microstructure-controlled and not defect-controlled failure. Low binder content as well as fine WC grains were found to improve the fatigue endurance strength. In no case, however, a horizontal branch of the S-N curve was observed, i.e. there is no fatigue “limit” at least up to 1010 cycles. The initiation sites were in part difficult to identify; in such cases when the site was clearly visible, decohesion of the binder from large WC grains seems to have caused crack initiation. This further corroborates that microstructural features and not singular defects as e.g. inclusions are the initiation sites, which underlines the high purity of the hardmetal grades used. Based on fracture mechanical consideration a damage diagram was determined allowing to deduce critical defect sizes.Peer ReviewedPostprint (author's final draft
Improving EBSD precision by orientation refinement with full pattern matching
We present a comparison of the precision of different approaches for orientation imaging using electron backscatter diffraction (EBSD) in the scanning electron microscope. We have used EBSD to image the internal structure of WC grains, which contain features due to dislocations and subgrains. We compare the conventional, Hough-transform based orientation results from the EBSD system software with results of a high-precision orientation refinement using simulated pattern matching at the full available detector resolution of 640 × 480 pixels. Electron channelling contrast imaging (ECCI) is used to verify the correspondence of qualitative ECCI features with the quantitative orientation data from pattern matching. For the investigated sample, this leads to an estimated pattern matching sensitivity of about 0.5 mrad (0.03°) and a spatial feature resolution of about 100 nm. In order to investigate the alternative approach of postprocessing noisy orientation data, we analyse the effects of two different types of orientation filters. Using reference features in the high-precision pattern matching results for comparison, we find that denoising of orientation data can reduce the spatial resolution, and can lead to the creation of orientation artefacts for crystallographic features near the spatial and orientational resolution limits of EBSD
Practical application of direct electron detectors to EBSD mapping in 2D and 3D
The use of a direct electron detector for the simple acquisition of 2D electron backscatter diffraction (EBSD) maps and 3D EBSD datasets with a static sample geometry has been demonstrated in a focused ion beam scanning electron microscope. The small size and flexible connection of the Medipix direct electron detector enabled the mounting of sample and detector on the same stage at the short working distance required for the FIB. Comparison of 3D EBSD datasets acquired by this means and with conventional phosphor based EBSD detectors requiring sample movement showed that the former method with a static sample gave improved slice registration. However, for this sample detector configuration, significant heating by the detector caused sample drift. This drift and ion beam reheating both necessitated the use of fiducial marks to maintain stability during data acquisition
Stucture and properties of sputter deposited Y-Ba-Cu-O thin films
SIGLEAvailable from British Library Document Supply Centre- DSC:D78816 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
Fracture and fatigue of rock bit cemented carbides: Mechanics and mechanisms of crack growth resistance under monotonic and cyclic loading
In an attempt to improve the material selection, design and reliability of rock bit WC-Co cemented carbides (hardmetals), an extensive and detailed study is conducted with the main goal of characterizing the fracture and fatigue crack growth (FCG) behavior of four hardmetal grades. Work includes basic microstructural and mechanical characterization of the materials, assessment of fracture toughness and FCG kinetics. It is found that rock bit cemented carbides exhibit relatively high fracture toughness values (between 17 and 20 MPa root m) in direct association with their specific microstructural characteristics, i.e. medium/coarse carbide grain size and medium cobalt content. The influence of microstructure on the measured crack growth mechanics under monotonic loading may be accounted by considering the effective operation of ductile ligament bridging and crack deflection as the prominent toughening mechanisms. Regarding FCG behavior, it is observed to exhibit a significant Km influence. Furthermore, relative increments in toughness are maintained, in terms of crack growth threshold, under cyclic loading. As a consequence, fatigue sensitivity for rock bit cemented carbides is found to be lower than that extrapolated from data reported for fine-grained grades. Crack growth resistance under cyclic loading for the hardmetals studied may be understood on the basis that prevalent toughening mechanisms (ductile ligament bridging and crack deflection) show distinct susceptibility to fatigue degradation and are thus critical in determining fatigue sensitivity. (C) 2014 Elsevier Ltd. All rights reserved
Fracture and fatigue of rock bit cemented carbides: Mechanics and mechanisms of crack growth resistance under monotonic and cyclic loading
In an attempt to improve the material selection, design and reliability of rock bit WC-Co cemented carbides (hardmetals), an extensive and detailed study is conducted with the main goal of characterizing the fracture and fatigue crack growth (FCG) behavior of four hardmetal grades. Work includes basic microstructural and mechanical characterization of the materials, assessment of fracture toughness and FCG kinetics. It is found that rock bit cemented carbides exhibit relatively high fracture toughness values (between 17 and 20 MPa root m) in direct association with their specific microstructural characteristics, i.e. medium/coarse carbide grain size and medium cobalt content. The influence of microstructure on the measured crack growth mechanics under monotonic loading may be accounted by considering the effective operation of ductile ligament bridging and crack deflection as the prominent toughening mechanisms. Regarding FCG behavior, it is observed to exhibit a significant Km influence. Furthermore, relative increments in toughness are maintained, in terms of crack growth threshold, under cyclic loading. As a consequence, fatigue sensitivity for rock bit cemented carbides is found to be lower than that extrapolated from data reported for fine-grained grades. Crack growth resistance under cyclic loading for the hardmetals studied may be understood on the basis that prevalent toughening mechanisms (ductile ligament bridging and crack deflection) show distinct susceptibility to fatigue degradation and are thus critical in determining fatigue sensitivity. (C) 2014 Elsevier Ltd. All rights reserved
Solidification in spray forming
Solidification in spray forming takes place in two distinct steps: typically half of the alloy latent heat is removed rapidly from the droplet spray created by gas atomization; the droplets are then constituted into a billet at deposition where the remaining liquid fraction solidifies relatively slowly. However, within the droplet spray, individual droplets have different thermal and solidification histories and depositing droplets may be solid, mushy, or liquid. Despite many studies of solidification behavior in spray forming, uncertainties and some misconceptions remain on how the solidification conditions in the spray and billet interact to give rise to the characteristic spray-formed microstructure comprising refined, polygonal/equiaxed primary grains with low levels of microsegregation. This article presents a simple numerical model for the spray-formed grain size arising from the deposition of the various droplets in the spray and combines insights provided by the model with previous investigations of the phenomena occurring during and immediately after deposition to propose a comprehensive description of the important solidification behavior during spray forming. Remelting, grain multiplication, thermal and elemental equilibration, and microstructural coarsening are proposed to play a critical role in the evolution of the spray-formed microstructure