9 research outputs found
Neutron star cooling: Theoretical aspects and observational constraints
The cooling theory of isolated neutron stars is reviewed. The main cooling
regulators are discussed, first of all, operation of direct Urca process (or
similar processes in exotic phases of dense matter) and superfluidity in
stellar interiors. The prospects to constrain gross parameters of supranuclear
matter in neutron-star interiors by confronting cooling theory with
observations of isolated neutron stars are outlined. A related problem of
thermal states of transiently accreting neutron stars with deep crustal heating
of accreted matter is discussed in application to soft X-ray transients.Comment: 10 pages, 3 figures, Proceedings of the 34th COSPAR Scientific
Assembly (Adv. Sp. Res., accepted
Neutrino Cooling of Neutron Stars. Medium effects
This review demonstrates that neutrino emission from dense hadronic component
in neutron stars is subject of strong modifications due to collective effects
in the nuclear matter. With the most important in-medium processes incorporated
in the cooling code an overall agreement with available soft X ray data can be
easily achieved. With these findings so called "standard" and "non-standard"
cooling scenarios are replaced by one general "nuclear medium cooling scenario"
which relates slow and rapid neutron star coolings to the star masses (interior
densities). In-medium effects take important part also at early hot stage of
neutron star evolution decreasing the neutrino opacity for less massive and
increasing for more massive neutron stars. A formalism for calculation of
neutrino radiation from nuclear matter is presented that treats on equal
footing one-nucleon and multiple-nucleon processes as well as reactions with
resonance bosons and condensates. Cooling history of neutron stars with quark
cores is also discussed.Comment: To be published in "Physics of Neutron Star Interiors", Eds. D.
Blaschke, N.K. Glendenning, A. Sedrakian, Springer, Heidelberg (2001
Pulsar Wind Nebulae with Bow Shocks: Non-thermal Radiation and Cosmic Ray Leptons
Pulsars with high spin-down power produce relativistic winds radiating a non-negligible fraction of this power over the whole electromagnetic range from radio to gamma-rays in the pulsar wind nebulae (PWNe). The rest of the power is dissipated in the interactions of the PWNe with the ambient interstellar medium (ISM). Some of the PWNe are moving relative to the ambient ISM with supersonic speeds producing bow shocks. In this case, the ultrarelativistic particles accelerated at the termination surface of the pulsar wind may undergo reacceleration in the converging flow system formed by the plasma outflowing from the wind termination shock and the plasma inflowing from the bow shock. The presence of magnetic perturbations in the flow, produced by instabilities induced by the accelerated particles themselves, is essential for the process to work. A generic outcome of this type of reacceleration is the creation of particle distributions with very hard spectra, such as are indeed required to explain the observed spectra of synchrotron radiation with photon indices Γ≲ 1.5. The presence of this hard spectral component is specific to PWNe with bow shocks (BSPWNe). The accelerated particles, mainly electrons and positrons, may end up containing a substantial fraction of the shock ram pressure. In addition, for typical ISM and pulsar parameters, the e+ released by these systems in the Galaxy are numerous enough to contribute a substantial fraction of the positrons detected as cosmic ray (CR) particles above few tens of GeV and up to several hundred GeV. The escape of ultrarelativistic particles from a BSPWN—and hence, its appearance in the far-UV and X-ray bands—is determined by the relative directions of the interstellar magnetic field, the velocity of the astrosphere and the pulsar rotation axis. In this respect we review the observed appearance and multiwavelength spectra of three different types of BSPWNe: PSR J0437-4715, the Guitar and Lighthouse nebulae, and Vela-like objects. We argue that high resolution imaging of such objects provides unique information both on pulsar winds and on the ISM. We discuss the interpretation of imaging observations in the context of the model outlined above and estimate the BSPWN contribution to the positron flux observed at the Earth
Evolution of a neutron star from its birth to old age
Abstract. The main stages in the evolution of a neutron star, from its birth as a proto-neutron star, to its old age as a cold, catalyzed configuration, are described. A proto-neutron star is formed in the aftermath of a successful supernova explosion and its evolution is dominated by neutrino diffusion. Its neutrino signal is a valuable diagnostic of its internal structure and composition. During its transformation from a hot, leptonrich to a cold, catalyzed remnant, the possibility exists that it can collapse into a black hole, which abruptly terminates neutrino emissions. The essential microphysics, reviewed herein, that controls its evolution are the equation of state of dense matter and its associated neutrino opacities. Several simulations of the proto-neutron star evolution, involving different assumptions about the composition of dense matter, are described. After its evolution into a nearly isothermal neutron star a hundred or so years after its birth, it may be observable through its thermal emission in X-rays during its life in the next million years. Its surface temperature will depend upon the rapidity of neutrino emission processes in its core, which depends on the composition of dense matter and whether or not its constituents exhibit superfluidity and superconductivity. Observations of thermal emission offer the best hope of a determination of the radius of a neutron star. The implications for the underlying dense matter equation of state of an accurate radius determination are explored.
Pulsar Wind Nebulae with Bow Shocks: Non-thermal Radiation and Cosmic Ray Leptons
Pulsars with high spin-down power produce relativistic winds radiating a
fraction of the power in the range from radio to gamma-rays in the pulsar wind
nebulae (PWNe). The rest of the power is dissipated in the interactions of the
PWNe with the interstellar medium (ISM). Some of the PWNe are moving relative
to the ISM with supersonic speeds producing bow shocks. In this case, the
ultrarelativistic particles accelerated at the termination surface of the
pulsar wind may be reaccelerated in the converging flow system formed by the
outflow from the wind termination shock and the inflow from the bow shock. An
outcome of this reacceleration is the creation of particle distributions with
hard spectra, such as required to explain the observed synchrotron spectra with
photon indices Gamma <~ 1.5. The presence of this hard component is specific to
PWNe with bow shocks (BSPWNe). The accelerated particles may end up containing
a substantial fraction of the shock ram pressure. For typical ISM and pulsar
parameters, the positrons released by these systems are numerous enough to
contribute a substantial fraction of the positrons detected as galactic cosmic
ray particles above few tens and up to several hundred GeV. The escape of
ultrarelativistic particles from a BSPWN and its appearance in the far-UV and
X-ray bands is determined by the directions of the interstellar magnetic field,
the velocity of the astrosphere and the pulsar rotation axis. In this respect
we review the observed appearance and multiwavelength spectra of three
different types of BSPWNe: PSR J0437-4715, the Guitar and Lighthouse nebulae,
and Vela-like objects. We argue that high resolution imaging of such objects
provides unique information on pulsar winds and on the ISM. We discuss the
interpretation of imaging observations and estimate the BSPWN contribution to
the positron flux observed at the Earth. (ABRIDGED)Comment: 69 pages, 18 figures, Space Science Reviews (in press) 201