546 research outputs found

    The Weakly Coupled Gross-Neveu Model with Wilson Fermions

    Get PDF
    The nature of the phase transition in the lattice Gross-Neveu model with Wilson fermions is investigated using a new analytical technique. This involves a new type of weak coupling expansion which focuses on the partition function zeroes of the model. Its application to the single flavour Gross-Neveu model yields a phase diagram whose structure is consistent with that predicted from a saddle point approach. The existence of an Aoki phase is confirmed and its width in the weakly coupled region is determined. Parity, rather than chiral symmetry breaking naturally emerges as the driving mechanism for the phase transition.Comment: 15 pages including 1 figur

    A numerical reinvestigation of the Aoki phase with N_f=2 Wilson fermions at zero temperature

    Get PDF
    We report on a numerical reinvestigation of the Aoki phase in lattice QCD with two flavors of Wilson fermions where the parity-flavor symmetry is spontaneously broken. For this purpose an explicitly symmetry-breaking source term hψˉiγ5τ3ψh\bar{\psi} i \gamma_{5} \tau^{3}\psi was added to the fermion action. The order parameter was computed with the Hybrid Monte Carlo algorithm at several values of (β,κ,h)(\beta,\kappa,h) on lattices of sizes 444^4 to 12412^4 and extrapolated to h=0h=0. The existence of a parity-flavor breaking phase can be confirmed at β=4.0\beta=4.0 and 4.3, while we do not find parity-flavor breaking at β=4.6\beta=4.6 and 5.0.Comment: 8 pages, 5 figures, Revised version as to be published in Phys.Rev.

    Fermion-scalar interactions with domain wall fermions

    Get PDF
    Domain wall fermions are defined on a lattice with an extra direction the size of which controls the chiral properties of the theory. When gauge fields are coupled to domain wall fermions the extra direction is treated as an internal flavor space. Here it is found that this is not the case for scalar fields. Instead, the interaction takes place only along the link that connects the boundaries of the extra direction. This reveals a richness in the way different spin particles are coupled to domain wall fermions. As an application, 4-Fermi models are studied using large N techniques and the results are supported by numerical simulations with N=2. It is found that the chiral properties of domain wall fermions in these models are good across a large range of couplings and that a phase with parity-flavor broken symmetry can develop for negative bare masses if the number of sites along the extra direction is finite.Comment: LaTeX, 17 pages, 8 eps figures; comment regarding the width of Aoki phase added in sec. 3; references adde

    Comparative Study of full QCD Hadron Spectrum and Static Quark Potential with Improved Actions

    Get PDF
    We investigate effects of action improvement on the light hadron spectrum and the static quark potential in two-flavor QCD for a11a^{-1} \approx 1 GeV and mPS/mV=0.70.9m_{PS}/m_V = 0.7-0.9. We compare a renormalization group improved action with the plaquette action for gluons, and the SW-clover action with the Wilson action for quarks. We find a significant improvement in the hadron spectrum by improving the quark action, while the gluon improvement is crucial for a rotationally invariant static potential. We also explore the region of light quark masses corresponding to mPS/mV0.4m_{PS}/m_V \geq 0.4 on a 2.7 fm lattice using the improved gauge and quark action. A flattening of the potential is not observed up to 2 fm.Comment: LaTeX, 35 pages, 22 eps figures, uses revtex and eps

    Surface Instability in Windblown Sand

    Full text link
    We investigate the formation of ripples on the surface of windblown sand based on the one-dimensional model of Nishimori and Ouchi [Phys. Rev. Lett. 71, 197 (1993)], which contains the processes of saltation and grain relaxation. We carry out a nonlinear analysis to determine the propagation speed of the restabilized ripple patterns, and the amplitudes and phases of their first, second, and third harmonics. The agreement between the theory and our numerical simulations is excellent near the onset of instability. We also determine the Eckhaus boundary, outside which the steady ripple patterns are unstable.Comment: 23 pages, 8 figure

    Convective Motion in a Vibrated Granular Layer

    Full text link
    Experimental results are presented for a vertically shaken granular layer. In the range of accelerations explored, the layer develops a convective motion in the form of one or more rolls. The velocity of the grains near the wall has been measured. It grows linearly with the acceleration, then the growing rate slows down. A rescaling with the amplitude of the wall velocity and the height of the granular layer makes all data collapse in a single curve. This can provide insights on the mechanism driving the motion.Comment: 10 pages, 5 figures submitted to Phys. Rev. Let

    Fictitious Magnetic Resonance by Quasi-Electrostatic Field

    Full text link
    We propose a new kind of spin manipulation method using a {\it fictitious} magnetic field generated by a quasi-electrostatic field. The method can be applicable to every atom with electron spins and has distinct advantages of small photon scattering rate and local addressability. By using a CO2\rm{CO_2} laser as a quasi-electrostatic field, we have experimentally demonstrated the proposed method by observing the Rabi-oscillation of the ground state hyperfine spin F=1 of the cold 87Rb\rm{^{87}Rb} atoms and the Bose-Einstein condensate.Comment: 5 pages, 5 figure

    Parallel tempering in full QCD with Wilson fermions

    Get PDF
    We study the performance of QCD simulations with dynamical Wilson fermions by combining the Hybrid Monte Carlo algorithm with parallel tempering on 10410^4 and 12412^4 lattices. In order to compare tempered with standard simulations, covariance matrices between sub-ensembles have to be formulated and evaluated using the general properties of autocorrelations of the parallel tempering algorithm. We find that rendering the hopping parameter κ\kappa dynamical does not lead to an essential improvement. We point out possible reasons for this observation and discuss more suitable ways of applying parallel tempering to QCD.Comment: 16 pages, 3 figure

    Chirally improving Wilson fermions - I. O(a) improvement

    Get PDF
    We show that it is possible to improve the chiral behaviour and the approach to the continuum limit of correlation functions in lattice QCD with Wilson fermions by taking arithmetic averages of correlators computed in theories regularized with Wilson terms of opposite sign. Improved hadronic masses and matrix elements can be obtained by similarly averaging the corresponding physical quantities separately computed within the two regularizations. To deal with the problems related to the spectrum of the Wilson--Dirac operator, which are particularly worrisome when Wilson and mass terms are such as to give contributions of opposite sign to the real part of the eigenvalues, we propose to use twisted-mass lattice QCD for the actual computation of the quantities taking part to the averages. The choice ±π/2\pm \pi/2 for the twisting angle is particularly interesting, as O(aa) improved estimates of physical quantities can be obtained even without averaging data from lattice formulations with opposite Wilson terms. In all cases little or no extra computing power is necessary, compared to simulations with standard Wilson fermions or twisted-mass lattice QCD.Comment: 71 pages, Latex, Keywords: Lattice, Improvement, Chirality. Version v2: mistake corrected in transformation properties under \omega -> -\omega, sect. 5.3.1 (see also sect. 6.1). Minor corrections in App. D and argument clarified in App. F. Version v3: minor modifications in sect. 2 (pag. 8-10: on the odd r-parity of M_crit(r)), in sect. 3.1.3 and 5.4.1 (few sentences about cutoff effects at small quark mass) and in sect. 3.2 (details of discussion below eq. 3.17); updated/added some reference

    Bifurcations of a driven granular system under gravity

    Full text link
    Molecular dynamics study on the granular bifurcation in a simple model is presented. The model consists of hard disks, which undergo inelastic collisions; the system is under the uniform external gravity and is driven by the heat bath. The competition between the two effects, namely, the gravitational force and the heat bath, is carefully studied. We found that the system shows three phases, namely, the condensed phase, locally fluidized phase, and granular turbulent phase, upon increasing the external control parameter. We conclude that the transition from the condensed phase to the locally fluidized phase is distinguished by the existence of fluidized holes, and the transition from the locally fluidized phase to the granular turbulent phase is understood by the destabilization transition of the fluidized holes due to mutual interference.Comment: 35 pages, 17 figures, to be published in PR
    corecore