104 research outputs found

    Tribology in the Core of a Sodium-Cooled Fast Breeder Reactor

    Get PDF

    MHD flow and heat transfer in a rectangular duct

    Get PDF
    MHD Strömung und Wärmeübergang in einem Rechteckkanal Lediglich eine profunde Kenntnis des Wärmeübertragungsverhaltens laminarer und turbulenter magnetohydrodynamischer (MHD) Strömungen erlaubt eine adäquate Auslegung von Wärmeübertragern, zum Beispiel von Flüssigmetallblankets, oder eine Steuerung industrieller Verfahren durch den Einsatz von MHD Effekten. In diesem Bericht wird die experimentelle und numerische Untersuchung einer MHD-Strömung in einem Rechteckkanal mit elektrisch leitenden Wänden vorgestellt. Ein äußeres konstantes Magnetfeld B steht senkrecht auf der Kanalachse und ist ebenfalls senkrecht zum Wärmestrom , der von einem Strahlungsheizer erzeugt wird. Im Kanal werden sowohl integrale Größen wie der Druckverlust und die Nusselt-Zahl aber auch lokale Größen, zum Beispiel die Temperatur an der Fluid-Wand-Grenzfläche, die Geschwindigkeit und die lokale Temperatur ermittelt. Der untersuchte Parameterbereich umfaßt: Hartmann-Zahlen 0£ M£ 5000, Reynolds-Zahlen 0£ Re£ 1.3.105 und Peclet-Zahlen 0£ Pe£ 2900 . Der gemessene Druckverlust stimmt mit der analytischen Lösung für eine zweidimensionale MHD-Strömung in nahezu dem gesamten untersuchten Parameterbereich überein. Lediglich für Hartmann-Zahlen M£ 350 und Re³ 7.104 wird ein höherer Druckverlust ermittelt. Beim Überschreiten einer kritischen Reynoldszahl Recrit von Recrit=100.M entspricht der MHD-Druckverlust dem einer turbulenten hydrodynamischen Rohrströmung. Die Temperatur- und Geschwindigkeitsverteilung im Kanal, die mit einer kombinierten Temperatur- und Geschwindigkeitsmeßsonde (TEMPO) ermittelt wurde, stimmt mit den berechneten Werten für eine laminare MHD-Strömung überein. Die Nusselt-Zahl an der Wand ist bei MHD-Strömungen aufgrund der wandnahen Geschwindigkeitsüberhöhungen (den sogenannten Seitenwandjets), die sich an Wänden parallel zum Magnetfeld ausbilden und direkt dem Wärmestrom ausgesetzt ist, um ca. 30% größer als in einer hydrodynamischen Strömung. Bei großen M und sehr großen Re entspricht der Wärmeübergang der turbulenten MHD Strömung dem Wärmeübergang wie er auch in einer laminaren Strömung ermittelt wird. Der Grund dafür ist, daß die thermische Grenzschicht sich noch im Bereich der viskosen laminaren Grenzschicht befindet und somit leistet lediglich die molekulare Wärmeleitung einen Beitrag zur Wärmeübertragung. Bei bestimmten Parameterkonstellationen oder bei hinreichend langen Kanälen wächst die Grenzschicht in den Bereich der turbulenten Seitenwandschichten hinein. Durch den turbulenten Quertransport des Fluids wird der Wärmeübergang gesteigert. Die Wärmeübertragungsverbesserung kann um den Faktor 2 höher sein als bei einer laminaren MHD-Strömung

    Liquid metal tribology in fast breeder reactors

    Get PDF

    CYGNUS : Feasibility of a nuclear recoil observatory with directional sensitivity to dark matter and neutrinos

    Get PDF
    Now that conventional weakly interacting massive particle (WIMP) dark matter searches are approaching the neutrino floor, there has been a resurgence of interest in detectors with sensitivity to nuclear recoil directions. A large-scale directional detector is attractive in that it would have sensitivity below the neutrino floor, be capable of unambiguously establishing the galactic origin of a purported dark matter signal, and could serve a dual purpose as a neutrino observatory. We present the first detailed analysis of a 1000~m3-scale detector capable of measuring a directional nuclear recoil signal at low energies. We propose a modular and multi-site observatory consisting of time projection chambers (TPCs) filled with helium and SF6 at atmospheric pressure. Depending on the TPC readout technology, 10-20 helium recoils above 6 kevr or only 3-4 recoils above 20~\kevr would suffice to distinguish a 10~GeV WIMP signal from the solar neutrino background. High-resolution charge readout also enables powerful electron background rejection capabilities well below 10~keV. We detail background and site requirements at the 1000~m3-scale, and identify materials that require improved radiopurity. The final experiment, which we name CYGNUS-1000, will be able to observe 10-40 neutrinos from the Sun, depending on the final energy threshold. With the same exposure, the sensitivity to spin independent cross sections will extend into presently unexplored sub-10 GeV parameter space. For spin dependent interactions, already a 10~m3-scale experiment could compete with upcoming generation-two detectors, but CYGNUS-1000 would improve upon this considerably. Larger volumes would bring sensitivity to neutrinos from an even wider range of sources, including galactic supernovae, nuclear reactors, and geological processes

    Brans-Dicke Theory and primordial black holes in Early Matter-Dominated Era

    Full text link
    We show that primordial black holes can be formed in the matter-dominated era with gravity described by the Brans-Dicke theory. Considering an early matter-dominated era between inflation and reheating, we found that the primordial black holes formed during that era evaporate at a quicker than those of early radiation-dominated era. Thus, in comparison with latter case, less number of primordial black holes could exist today. Again the constraints on primordial black hole formation tend towards the larger value than their radiation-dominated era counterparts indicating a significant enhancement in the formation of primordial black holes during the matter-dominaed era.Comment: 9 page
    corecore