2,161 research outputs found

    Spatially inhomogeneous steady state solutions for systems of equations describing interacting populations

    Get PDF
    Podeu consultar la versió en català a: http://hdl.handle.net/11703/8772

    A semilinear elliptic system involving nonlinear boundary condition and sign-changing weight function

    Get PDF
    AbstractIn this paper, we study the combined effect of concave and convex nonlinearities on the number of solutions for a semilinear elliptic system (Eλ,μ) involving nonlinear boundary condition and sign-changing weight function. With the help of the Nehari manifold, we prove that the system has at least two nontrivial nonnegative solutions when the pair of the parameters (λ,μ) belongs to a certain subset of R2

    Weak Boson Production Amplitude Zeros; Equalities of the Helicity Amplitudes

    Get PDF
    We investigate the radiation amplitude zeros exhibited by many Standard Model amplitudes for triple weak gauge boson production processes. We show that WZγWZ\gamma production amplitudes have especially rich structure in terms of zeros, these amplitudes have zeros originating from several different sources. It is also shown that TYPE I current null zone is the special case of the equality of the specific helicity amplitudes.Comment: 27 pages, 12 figures, 2 table

    A computational model of binaural speech recognition: Role of across-frequency vs. within-frequency processing and internal noise

    Get PDF
    This study describes a model of binaural speech recognition that is tested against psychoacoustic findings on binaural speech intelligibility in noise. It consists of models of the auditory periphery, binaural pathway and recognition of speech from glimpses based on the missing data approach, which allows the speech reception threshold (SRT) of the model and listeners to be compared. The binaural advantage based on differences between the interaural time differences (ITD) of the target and masker is modelled using the equalization-cancellation (EC) mechanism, either independently within each frequency channel or across all channels. The model is tested using a stimulus paradigm in which the target speech and noise interference are split into low- and high-frequency bands, so that the ITD in each band can be varied independently. The match between the model and listener data is quantified by a normalized SRT distance and a correlation metric, which demonstrate a slightly better match for the within-channel model (SRT: 0.5 dB, correlation: 0.94), than for the across-channel model (SRT: 0.7 dB, correlation: 0.90). However, as the differences between the approaches are small and non-significant, our results suggest that listeners exploit ITD via a mechanism that is neither fully frequency-dependent nor fully frequency-independent

    Langevin Simulation of Thermally Activated Magnetization Reversal in Nanoscale Pillars

    Full text link
    Numerical solutions of the Landau-Lifshitz-Gilbert micromagnetic model incorporating thermal fluctuations and dipole-dipole interactions (calculated by the Fast Multipole Method) are presented for systems composed of nanoscale iron pillars of dimension 9 nm x 9 nm x 150 nm. Hysteresis loops generated under sinusoidally varying fields are obtained, while the coercive field is estimated to be 1979 ±\pm 14 Oe using linear field sweeps at T=0 K. Thermal effects are essential to the relaxation of magnetization trapped in a metastable orientation, such as happens after a rapid reversal of an external magnetic field less than the coercive value. The distribution of switching times is compared to a simple analytic theory that describes reversal with nucleation at the ends of the nanomagnets. Results are also presented for arrays of nanomagnets oriented perpendicular to a flat substrate. Even at a separation of 300 nm, where the field from neighboring pillars is only \sim 1 Oe, the interactions have a significant effect on the switching of the magnets.Comment: 19 pages RevTeX, including 12 figures, clarified discussion of numerical technique

    Zoledronic Acid Has Differential Antitumor Activity in the Pre- and Postmenopausal Bone Microenvironment In Vivo

    Get PDF
    Purpose: Clinical trials in early breast cancer have suggested that benefits of adjuvant bone-targeted treatments are restricted to women with established menopause. We developed models that mimic pre- and postmenopausal status to investigate effects of altered bone turnover on growth of disseminated breast tumor cells. Here, we report a differential antitumor effect of zoledronic acid (ZOL) in these two settings. Experimental design: Twleve-week-old female Balb/c-nude mice with disseminated MDA-MB-231 breast tumor cells in bone underwent sham operation or ovariectomy (OVX), mimicking the pre- and postmenopausal bone microenvironment, respectively. To determine the effects of bone-targeted therapy, sham/OVX animals received saline or 100 μg/kg ZOL weekly. Tumor growth was assessed by in vivo imaging and effects on bone by real-time PCR, micro-CT, histomorphometry, and measurements of bone markers. Disseminated tumor cells were detected by two-photon microscopy. Results: OVX increased bone resorption and induced growth of disseminated tumor cells in bone. Tumors were detected in 83% of animals following OVX (postmenopausal model) compared with 17% following sham operation (premenopausal model). OVX had no effect on tumors outside of bone. OVX-induced tumor growth was completely prevented by ZOL, despite the presence of disseminated tumor cells. ZOL did not affect tumor growth in bone in the sham-operated animals. ZOL increased bone volume in both groups. Conclusions: This is the first demonstration that tumor growth is driven by osteoclast-mediated mechanisms in models that mimic post- but not premenopausal bone, providing a biologic rationale for the differential antitumor effects of ZOL reported in these settings

    Effects of Methylene Blue and Polyethelene Glycol on Facial Nerve Axotomy Recovery

    Get PDF
    poster abstractInjury and disease are common factors affecting peripheral nerves and can lead to loss of function. Recovery time after an injury is slow and not very efficient in humans. Treatment methods involving methylene blue (MB) and polyethylene glycol (PEG) have shown combinational effects in sciatic nerve axotomies. We are using behavior analysis of eye blink reflex and vibrissae orientation and movement as a measurement of rate of functional recovery. We will have treatment groups of both cut and crush rats. For each group we will be testing the effect of PEG/MB or no treatment control groups. The results of these treatment groups are significant to finding treatment options for clinical use
    corecore