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Abstract

In this paper, we study the combined effect of concave and convex nonlinearities on the number of solutions for a semilinear
elliptic system (Eλ,μ) involving nonlinear boundary condition and sign-changing weight function. With the help of the Nehari
manifold, we prove that the system has at least two nontrivial nonnegative solutions when the pair of the parameters (λ,μ) belongs
to a certain subset of R

2.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we consider the multiplicity results of nontrivial nonnegative solutions of the following semilinear
elliptic system:⎧⎪⎪⎨

⎪⎪⎩
−�u + u = α

α+β
f (x)|u|α−2u|v|β in Ω,

−�v + v = β
α+β

f (x)|u|α|v|β−2v in Ω,

∂u
∂n

= λg(x)|u|q−2u, ∂v
∂n

= μh(x)|v|q−2v on ∂Ω,

(Eλ,μ)

where Ω is a bounded domain in R
N with smooth boundary, α > 1, β > 1 satisfying 2 < α + β < 2∗ (2∗ = 2N

N−2 if

N � 3, 2∗ = ∞ if N = 2), 1 < q < 2, the pair of parameters (λ,μ) ∈ R
2 \ {(0,0)} and the weight functions f,g,h

are satisfying the following conditions:

(A) f ∈ C( �Ω) with ‖f ‖∞ = 1 and f + = max{f,0} �≡ 0;
(B) g,h ∈ C(∂Ω) with ‖g‖∞ = ‖h‖∞ = 1, g± = max{±g,0} �≡ 0 and h± = max{±h,0} �≡ 0.
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Semilinear elliptic problems with nonlinear boundary condition are widely studied; we refer the reader to Garcia-
Azorero, Peral and Rossi [5] and Wu [6,7]. Recently, in [6] the author considered a semilinear elliptic equation
involving sign-changing weight function, and showed multiplicity results with respect to the parameter via the extrac-
tion of Palais-Smale sequences in the Nehari manifold.

Because the two sublinear boundary conditions in problem (Eλ,μ) are homogeneous of the same degree q − 1 and
so the problem (Eλ,μ) is similar to the Ambrosetti, Brezis and Cerami problem [1] (a semilinear elliptic equation
involving concave and convex nonlinearities). Thus, the existence of more than one nontrivial solution for problem
(Eλ,μ) is expected. In this paper, we give a very simple variational method which is similar to the “fibering method” of
Pohozaev’s (see [3] or [4]) to prove the existence of at least two nontrivial nonnegative solutions of problem (Eλ,μ).
In particular we do this without the extraction of Palais-Smale sequences in the Nehari manifold. Throughout this
section, we let S and �S be the best Sobolev and the best Sobolev trace constants for the embedding of H 1

0 (Ω) in
Lα+β(Ω) and H 1

0 (Ω) in Lq(∂Ω), respectively. And let C0 = (
q
2 )2/(2−q)C(α,β, q,S,�S) be a positive number where

C(α,β, q,S,�S) = (
α+β−q

2−q
Sα+β)2/(2−α−β)(

α+β−2
α+β−q

�S−q)
2

2−q . Then we have the following result.

Theorem 1.1. If the parameters λ,μ satisfy

0 < |λ| 2
2−q + |μ| 2

2−q < C0,

then problem (Eλ,μ) has at least two solutions (u+
0 , v+

0 ) and (u−
0 , v−

0 ) such that u±
0 � 0, v±

0 � 0 in Ω and u±
0 �= 0,

v±
0 �= 0. Furthermore, if f � 0, then u±

0 > 0, v±
0 > 0 in Ω.

This paper is organized as follows. In Section 2, we give some the properties of the Nehari manifold. In Section 3,
we prove Theorem 1.1.

2. Nehari manifold

Problem (Eλ,μ) is posed in the framework of the Sobolev space H = H 1(Ω) × H 1(Ω) with the standard norm

∥∥(u, v)
∥∥

H
=

(∫
Ω

(|∇u|2 + u2)dx +
∫
Ω

(|∇v|2 + v2)dx

) 1
2

.

Moreover, a pair of functions (u, v) ∈ H is said to be a weak solution of problem (Eλ,μ) if∫
Ω

(∇u∇ϕ1 + uϕ1) dx +
∫
Ω

(∇v∇ϕ2 + vϕ2) dx − α

α + β

∫
Ω

f |u|α−2u|v|βϕ1 dx − β

α + β

∫
Ω

f |u|α|v|β−2vϕ2 dx

− λ

∫
∂Ω

g|u|q−2uϕ1 ds − μ

∫
∂Ω

h|v|q−2vϕ2 ds = 0

for all (ϕ1, ϕ2) ∈ H. Thus, the corresponding energy functional of problem (Eλ,μ) is defined by

Jλ,μ(u, v) = 1

2

∥∥(u, v)
∥∥2

H
− 1

α + β

∫
Ω

f |u|α|v|β dx − 1

q
Kλ,μ(u, v)

for (u, v) ∈ H, where Kλ,μ(u, v) = λ
∫
∂Ω

g|u|q ds + μ
∫
∂Ω

h|v|q ds.

As the energy functional Jλ,μ is not bounded below on H, it is useful to consider the functional on the Nehari
manifold

Nλ,μ = {
(u, v) ∈ H \ {

(0,0)
} ∣∣ 〈

J ′
λ,μ(u, v), (u, v)

〉 = 0
}
.

Thus, (u, v) ∈ Nλ,μ if and only if〈
J ′

λ,μ(u, v), (u, v)
〉 = ∥∥(u, v)

∥∥2
H

−
∫
Ω

f |u|α|v|β dx − Kλ,μ(u, v) = 0. (2.1)

Note that Nλ,μ contains every nonzero solution of problem (Eλ,μ). Moreover, we have the following results.
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Lemma 2.1. The energy functional Jλ,μ is coercive and bounded below on Nλ,μ.

Proof. If (u, v) ∈ Nλ,μ, then by the Sobolev imbedding theorem

Jλ,μ(u, v) = α + β − 2

2(α + β)

∥∥(u, v)
∥∥2

H
−

(
α + β − q

q(α + β)

)
Kλ,μ(u, v)

� α + β − 2

2(α + β)

∥∥(u, v)
∥∥2

H
− �Sq

(
α + β − q

q(α + β)

)(|λ| 2
2−q + |μ| 2

2−q
) 2−q

2
∥∥(u, v)

∥∥q

H
. (2.2)

Thus, Jλ is coercive and bounded below on Nλ,μ. �
Define

Φλ,μ(u, v) = 〈
J ′

λ,μ(u, v), (u, v)
〉
.

Then for (u, v) ∈ Nλ,μ,

〈
Φ ′

λ,μ(u, v), (u, v)
〉 = 2

∥∥(u, v)
∥∥2

H
− (α + β)

∫
Ω

f |u|α|v|β dx − qKλ,μ(u, v) (2.3)

= (2 − α − β)

∫
Ω

f |u|α|v|β dx − (q − 2)Kλ,μ(u, v). (2.4)

Now, we split Nλ,μ into three parts:

N+
λ,μ = {

(u, v) ∈ Nλ,μ

∣∣ 〈
Φ ′

λ,μ(u, v), (u, v)
〉
> 0

};
N0

λ,μ = {
(u, v) ∈ Nλ,μ

∣∣ 〈
Φ ′

λ,μ(u, v), (u, v)
〉 = 0

};
N−

λ,μ = {
(u, v) ∈ Nλ,μ

∣∣ 〈
Φ ′

λ,μ(u, v), (u, v)
〉
< 0

}
.

Then, we have the following results.

Lemma 2.2. Suppose that (u0, v0) is a local minimizer for Jλ,μ on Nλ,μ and that (u0, v0) /∈ N0
λ,μ. Then

J ′
λ,μ(u0, v0) = 0 in H−1 (the dual space of the Sobolev space H).

Proof. Our proof is almost the same as that in Brown and Zhang [3, Theorem 2.3] (or see Binding, Drabek, and
Huang [2]). �
Lemma 2.3. We have

(i) if (u, v) ∈ N+
λ,μ, then Kλ,μ(u, v) > 0;

(ii) if (u, v) ∈ N0
λ,μ, then Kλ,μ(u, v) > 0 and

∫
Ω

f |u|α|v|β dx > 0;
(iii) if (u, v) ∈ N−

λ,μ, then
∫
Ω

f |u|α|v|β dx > 0.

Proof. The proof is immediate from (2.1) and (2.4). �
Moreover, we have the following result.

Lemma 2.4. If

0 < |λ| 2
2−q + |μ| 2

2−q < C(α,β, q,S,�S),

then N0 = ∅.
λ,μ
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Proof. Suppose otherwise, that is there exists (λ,μ) ∈ R
2 \ {(0,0)} with

0 < |λ| 2
2−q + |μ| 2

2−q < C(α,β, q,S,�S)

such that N0
λ,μ �= ∅. Then for (u, v) ∈ N0

λ,μ we have

0 = 〈
Φ ′

λ,μ(u, v), (u, v)
〉 = (2 − q)

∥∥(u, v)
∥∥2

H
− (α + β − q)

∫
Ω

f |u|α|v|β dx

= (2 − α − β)
∥∥(u, v)

∥∥2
H

− (q − α − β)Kλ,μ(u, v).

By the Hölder inequality and the Sobolev imbedding theorem,

∥∥(u, v)
∥∥

H
�

(
α + β − q

2 − q
Sα+β

) 1
2−α−β

and

∥∥(u, v)
∥∥

H
�

(
α + β − q

α + β − 2

) 1
2−q �S q

2−q
(|λ| 2

2−q + |μ| 2
2−q

) 1
2 .

This implies

|λ| 2
2−q + |μ| 2

2−q � C(α,β, q,S,�S)

which is a contradiction. Thus, we can conclude that if

0 < |λ| 2
2−q + |μ| 2

2−q < C(α,β, q,S,�S),

we have N0
λ,μ = ∅. �

By Lemma 2.4, we write Nλ,μ = N+
λ,μ ∪ N−

λ,μ and define

θ+
λ,μ = inf

(u,v)∈N+
λ,μ

Jλ,μ(u, v); θ−
λ,μ = inf

(u,v)∈N−
λ,μ

Jλ,μ(u, v).

Then we have the following result.

Theorem 2.5. If 0 < |λ| 2
2−q + |μ| 2

2−q < C0, then we have

(i) θ+
λ,μ < 0;

(ii) θ−
λ,μ > d0 for some d0 = d0(α,β, q,�S,S,λ,μ) > 0.

Proof. (i) Let (u, v) ∈ N+
λ,μ. By (2.3)

2 − q

α + β − q

∥∥(u, v)
∥∥2

H
>

∫
Ω

f |u|α|v|β dx

and so

Jλ,μ(u, v) =
(

1

2
− 1

q

)∥∥(u, v)
∥∥2

H
+

(
1

q
− 1

α + β

)∫
Ω

f |u|α|v|β dx

<

[(
1

2
− 1

q

)
+

(
1

q
− 1

α + β

)
2 − q

α + β − q

]∥∥(u, v)
∥∥2

H

= − (2 − q)(α + β − 2)∥∥(u, v)
∥∥2

H
< 0.
2q(α + β)
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Thus, θ+
λ,μ < 0.

(ii) Let (u, v) ∈ N−
λ,μ. By (2.3)

2 − q

α + β − q

∥∥(u, v)
∥∥2

H
<

∫
Ω

f |u|α|v|β dx.

Moreover, by the Sobolev imbedding theorem∫
Ω

f |u|α|v|β dx � Sα+β
∥∥(u, v)

∥∥α+β

H
.

This implies

∥∥(u, v)
∥∥

H
>

(
2 − q

(α + β − q)Sα+β

) 1
α+β−2

for all (u, v) ∈ N−
λ,μ. (2.5)

By (2.2) in the proof of Lemma 2.1

Jλ,μ(u, v) �
∥∥(u, v)

∥∥q

H

[
α + β − 2

2(α + β)

∥∥(u, v)
∥∥2−q

H
− �Sq

(
α + β − q

q(α + β)

)(|λ| 2
2−q + |μ| 2

2−q
) 2−q

2

]

>

(
2 − q

(α + β − q)Sα+β

) q
α+β−2

×
[
α + β − 2

2(α + β)

(
2 − q

(α + β − q)Sα+β

) 2−q
α+β−2 − �Sq

(
α + β − q

q(α + β)

)(|λ| 2
2−q + |μ| 2

2−q
) 2−q

2

]
.

Thus, if

0 < |λ| 2
2−q + |μ| 2

2−q < C0,

then

Jλ,μ(u, v) > d0 for all (u, v) ∈ N−
λ,μ,

for some d0 = d0(α,β, q,�S,S,λ,μ) > 0. This completes the proof. �
For each (u, v) ∈ H with

∫
Ω

f |u|α|v|β dx > 0, we write

tmax =
(

(2 − q)‖(u, v)‖2
H

(α + β − q)
∫
Ω

f |u|α|v|β dx

) 1
α+β−2

> 0.

Then the following lemma hold.

Lemma 2.6. For each (u, v) ∈ H with
∫
Ω

f |u|α|v|β dx > 0, we have

(i) if Kλ,μ(u, v) � 0, then there is unique t− > tmax such that (t−u, t−v) ∈ N−
λ,μ and

Jλ,μ

(
t−u, t−v

) = sup
t�0

Jλ,μ(tu, tv);

(ii) if Kλ,μ(u, v) > 0, then there are unique 0 < t+ < tmax < t− such that (t+u, t+v) ∈ N+
λ,μ, (t−u, t−v) ∈ N−

λ,μ and

Jλ,μ

(
t+u, t+v

) = inf
0�t�tmax

Jλ,μ(tu, tv); Jλ,μ

(
t−u, t−v

) = sup
t�0

Jλ,μ(tu, tv).

Proof. Fix (u, v) ∈ H with
∫
Ω

f |u|α|v|β dx > 0. Let

m(t) = t2−q
∥∥(u, v)

∥∥2
H

− tα+β−q

∫
f |u|α|v|β dx for t � 0. (2.6)
Ω
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Clearly, m(0) = 0, m(t) → −∞ as t → ∞. Since

m′(t) = (2 − q)t1−q
∥∥(u, v)

∥∥2
H

− (α + β − q)tα+β−q−1
∫
Ω

f |u|α|v|β dx

we have m′(t) = 0 at t = tmax, m′(t) > 0 for t ∈ [0, tmax) and m′(t) < 0 for t ∈ (tmax,∞). Then m(t) achieves its
maximum at tmax, is increasing for t ∈ [0, tmax) and decreasing for t ∈ (tmax,∞). Moreover,

m(tmax) = ∥∥(u, v)
∥∥q

H

[(
2 − q

α + β − q

) 2−q
α+β−2 −

(
2 − q

α + β − q

) α+β−q
α+β−2

]( ‖(u, v)‖α+β
H∫

Ω
f |u|α|v|β dx

) 2−q
α+β−2

�
∥∥(u, v)

∥∥q

H

(
α + β − 2

α + β − q

)(
α + β − q

2 − q
Sα+β

) 2−q
2−α−β

. (2.7)

(i) Kλ,μ(u, v) � 0. There is a unique t− > tmax such that m(t−) = Kλ,μ(u, v) and m′(t−) < 0. Now,

(2 − q)
(
t−

)2∥∥(u, v)
∥∥2

H
− (α + β − q)

(
t−

)α+β
∫
Ω

f |u|α|v|β dx = (
t−

)1+q
m′(t−)

< 0,

and 〈
J ′

λ,μ

(
t−u, t−v

)
,
(
t−u, t−v

)〉 = (
t−

)q[
m

(
t−

) − Kλ,μ(u, v)
] = 0.

Thus, (t−u, t−v) ∈ N−
λ,μ. Since for t > tmax, we have

(2 − q)
∥∥(tu, tv)

∥∥2
H

− (α + β − q)

∫
Ω

f |tu|α|tv|β dx < 0,
d2

dt2
Jλ,μ(tu, tv) < 0

and
d

dt
Jλ,μ(tu, tv) = t

∥∥(u, v)
∥∥2

H
− tqKλ,μ(u, v) − tα+β

∫
Ω

f |u|α|v|β dx = 0 for t = t−.

Thus, Jλ,μ(t−u, t−v) = supt�0 Jλ,μ(tu, tv).

(ii) Kλ,μ(u, v) > 0. By (2.7) and

m(0) = 0

< Kλ,μ(u, v)

� �Sq
(|λ| 2

2−q + |μ| 2
2−q

) 2−q
2

∥∥(u, v)
∥∥q

H

<
∥∥(u, v)

∥∥q

H

(
α + β − 2

α + β − q

)(
α + β − q

2 − q
Sα+β

) 2−q
2−α−β

� m(tmax),

for 0 < |λ| 2
2−q + |μ| 2

2−q < C(α,β, q,S,�S), there are unique t+ and t− such that 0 < t+ < tmax < t−,

m
(
t+

) = Kλ,μ(u, v) = m
(
t−

)
and

m′(t+)
> 0 > m′(t−)

.

We have (t+u, t+v) ∈ N+
λ,μ, (t−u, t−v) ∈ N−

λ,μ, and Jλ,μ(t−u, t−v) � Jλ,μ(tu, tv) � Jλ,μ(t+u, t+v) for each t ∈
[t+, t−] and Jλ,μ(t+u, t+v) � Jλ,μ(tu, tv) for each t ∈ [0, t+]. Thus,

Jλ,μ

(
t+u, t+v

) = inf
0�t�tmax

Jλ,μ(tu, tv); Jλ,μ

(
t−u, t−v

) = sup
t�0

Jλ,μ(tu, tv).

This completes the proof. �
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For each (u, v) ∈ H with Kλ,μ(u, v) > 0, we write

t̄max =
(

(α + β − q)Kλ,μ(u, v)

(α + β − 2)‖(u, v)‖2
H

) 1
2−q

> 0. (2.8)

Then we have the following lemma.

Lemma 2.7. For each (u, v) ∈ H with Kλ,μ(u, v) > 0, we have

(i) if
∫
Ω

f |u|α|v|β dx � 0, then there is unique 0 < t+ < t̄max such that (t+u, t+v) ∈ N+
λ,μ and

Jλ,μ

(
t+u, t+v

) = inf
t�0

Jλ,μ(tu, tv);

(ii) if
∫
Ω

f |u|α|v|β dx > 0, then there are unique 0 < t+ < t̄max < t− such that (t+u, t+v) ∈ N+
λ,μ, (t−u, t−v) ∈ N−

λ,μ

and

Jλ,μ

(
t+u, t+v

) = inf
0�t�t̄max

Jλ,μ(tu, tv); Jλ,μ

(
t−u, t−v

) = sup
t�0

Jλ,μ(tu, tv).

Proof. Fix (u, v) ∈ H with Kλ,μ(u, v) > 0. Let

m̄(t) = t2−α−β
∥∥(u, v)

∥∥2
H

− tq−α−βKλ,μ(u, v) for t > 0. (2.9)

Clearly, m̄(t) → −∞ as t → 0+, m̄(t) → 0 as t → ∞. Since

m̄′(t) = (2 − α − β)t1−α−β
∥∥(u, v)

∥∥2
H

− (q − α − β)tq−α−β−1Kλ,μ(u, v)

we have m̄′(t) = 0 at t = t̄max, m̄′(t) > 0 for t ∈ [0, t̄max) and m̄′(t) < 0 for t ∈ (t̄max,∞). Then m̄(t) achieves
its maximum at t̄max, is increasing for t ∈ (0, t̄max) and decreasing for t ∈ (t̄max,∞). Similar to the argument in
Lemma 2.6, we can obtain the results of Lemma 2.7. �
3. Proof of Theorem 1.1

First, we establish the existence of a local minimum for Jλ,μ on N+
λ,μ.

Theorem 3.1. If 0 < |λ| 2
2−q + |μ| 2

2−q < C0, then Jλ,μ has a minimizer (u+
0 , v+

0 ) in N+
λ,μ and it satisfies

(i) Jλ,μ(u+
0 , v+

0 ) = θ+
λ,μ;

(ii) (u+
0 , v+

0 ) is a solution of problem (Eλ,μ), such that u+
0 � 0, v+

0 � 0 in Ω and u+
0 �= 0, v+

0 �= 0.

Proof. Let {(un, vn)} be a minimizing sequence for Jλ,μ on N+
λ,μ. Then by Lemma 2.1 and the compact imbedding

theorem, there exist a subsequence {(un, vn)} and (u+
0 , v+

0 ) ∈ H such that (u+
0 , v+

0 ) is a solution of problem (Eλ,μ)

and

un ⇀ u+
0 weakly in H 1

0 (Ω),

un → u+
0 strongly in Lq(∂Ω) and in Lα+β(Ω),

vn ⇀ v+
0 weakly in H 1

0 (Ω),

vn → v+
0 strongly in Lq(∂Ω) and in Lα+β(Ω).

This implies

Kλ,μ(un, vn) → Kλ,μ

(
u+

0 , v+
0

)
as n → ∞,∫

f |un|α|vn|β →
∫

f
∣∣u+

0

∣∣α∣∣v+
0

∣∣β as n → ∞.
Ω Ω
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Since

Jλ,μ(un, vn) = α + β − 2

2(α + β)

∥∥(un, vn)
∥∥2

H
− α + β − q

q(α + β)
Kλ,μ(un, vn)

and by Theorem 2.5(i)

Jλ,μ(un, vn) → θ+
λ,μ < 0 as n → ∞.

Letting n → ∞, we see that Kλ,μ(u+
0 , v+

0 ) > 0. Now we prove that

un → u+
0 strongly in H 1(Ω),

vn → v+
0 strongly in H 1(Ω).

Supposing the contrary, then either∥∥u+
0

∥∥
H 1 < lim inf

n→∞ ‖un‖H 1 or
∥∥v+

0

∥∥
H 1 < lim inf

n→∞ ‖vn‖H 1 . (3.1)

Fix (u, v) ∈ H with Kλ,μ(u, v) > 0. Let

φ(u,v)(t) = m̄(t) −
∫
Ω

f |u|α|v|β dx

where m̄(t) is as in (2.9). Clearly, φ(u,v)(t) → −∞ as t → 0+ and

φ(u,v)(t) → −
∫
Ω

f |u|α|v|β dx as t → ∞.

Since φ′
(u,v)(t) = m̄′(t), similar argument as in the proof of Lemma 2.7 we have φ(u,v)(t) achieves its maximum at

t̄max(u, v), is increasing for t ∈ (0, t̄max(u, v)) and decreasing for t ∈ (t̄max(u, v),∞), where

t̄max(u, v) =
(

(α + β − q)Kλ,μ(u, v)

(α + β − 2)‖(u, v)‖2
H

) 1
2−q

is as in (2.8). Since Kλ,μ(u+
0 , v+

0 ) > 0, by Lemma 2.7, there is a unique 0 < t+0 < t̄max(u
+
0 , v+

0 ) such that
(t+0 u+

0 , t+0 v+
0 ) ∈ N+

λ,μ and

Jλ,μ

(
t+0 u+

0 , t+0 v+
0

) = inf
0�t�t̄max(u

+
0 ,v+

0 )

Jλ,μ

(
tu+

0 , tv+
0

)
.

Then

φ(u+
0 ,v+

0 )

(
t+0

) = (
t+0

)−(α+β)
(∥∥(

t+0 u+
0 , t+0 v+

0

)∥∥2
H

− Kλ,μ

(
t+0 u+

0 , t+0 v+
0

) −
∫
Ω

f
∣∣t+0 u+

0

∣∣α∣∣t+0 v+
0

∣∣β dx

)
= 0. (3.2)

By (3.1) and (3.2) we obtain

φ(un,vn)

(
t+0

)
> 0 for n sufficiently large. (3.3)

Since (un, vn) ∈ N+
λ,μ, we have t̄max(un, vn) > 1. Moreover,

φ(un,vn)(1) = ∥∥(un, vn)
∥∥2

H
− Kλ,μ(un, vn) −

∫
Ω

f |un|α|vn|β dx = 0

and φ(un,vn)(t) is increasing for t ∈ (0, t̄max(un, vn)). This implies φ(un,vn)(t) � 0 for all t ∈ (0,1] and n sufficiently
large. We obtain 1 < t+0 � t̄max(u

+
0 , v+

0 ). But (t+0 u+
0 , t+0 v+

0 ) ∈ N+
λ,μ and

Jλ,μ

(
t+0 u+

0 , t+0 v+
0

) = inf
0�t�t̄ (u+,v+)

Jλ,μ

(
tu+

0 , tv+
0

)
.

max 0 0
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This implies

Jλ,μ

(
t+0 u+

0 , t+0 v+
0

)
< Jλ,μ

(
u+

0 , v+
0

)
< lim

n→∞Jλ,μ(un, vn) = θ+
λ,μ,

which is a contradiction. Hence

un → u+
0 strongly in H 1(Ω),

vn → v+
0 strongly in H 1(Ω).

This implies

Jλ,μ(un, vn) → Jλ,μ

(
u+

0 , v+
0

) = θ+
λ,μ as n → ∞.

Thus, (u+
0 , v+

0 ) is a minimizer for Jλ,μ on N+
λ,μ. Since Jλ,μ(u+

0 , v+
0 ) = Jλ,μ(|u+

0 |, |v+
0 |) and (|u+

0 |, |v+
0 |) ∈ N+

λ,μ,

by Lemma 2.2 we may assume that (u+
0 , v+

0 ) is a nonnegative solution of problem (Eλ,μ). Finally, we prove that
u+

0 �= 0, v+
0 �= 0. We assume that, without loss of generality, v+

0 ≡ 0. Then as u+
0 is a nonzero solution of{−�u + u = 0 in Ω,

∂u
∂n

= λg(x)|u|q−2u on ∂Ω,

we have∥∥u+
0

∥∥2
H 1 = λ

∫
∂Ω

g
∣∣u+

0

∣∣q ds > 0.

Moreover, by the conditions (A), (B) we may choose w ∈ H 1(Ω) \ {0} such that

‖w‖2
H 1 = μ

∫
∂Ω

h|w|q ds > 0

and ∫
Ω

f
∣∣u+

0

∣∣α|w|β dx � 0.

Now

Kλ,μ

(
u+

0 ,w
) = λ

∫
∂Ω

g
∣∣u+

0

∣∣q ds + μ

∫
∂Ω

h|w|q ds > 0

and so by Lemma 2.7 there is a unique 0 < t+ < t̄max such that (t+u+
0 , t+w) ∈ N+

λ,μ. Moreover,

t̄max =
(

(α + β − q)Kλ,μ(u+
0 ,w)

(α + β − 2)‖(u+
0 ,w)‖2

H

) 1
2−q =

(
α + β − q

α + β − 2

) 1
2−q

> 1

and

Jλ,μ

(
t+u+

0 , t+w
) = inf

0�t�t̄max

Jλ,μ

(
tu+

0 , tw
)
.

This implies

Jλ,μ

(
t+u+

0 , t+w
)
� Jλ,μ

(
u+

0 ,w
)
< Jλ,μ

(
u+

0 ,0
) = θ+

λ,μ

which is a contradiction. �
Next, we establish the existence of a local minimum for Jλ,μ on N−

λ,μ.

Theorem 3.2. If 0 < |λ| 2
2−q + |μ| 2

2−q < C0, then Jλ,μ has a minimizer (u−
0 , v−

0 ) in N−
λ,μ and it satisfies

(i) Jλ,μ(u−
0 , v−

0 ) = θ−
λ,μ;

(ii) (u−, v−) is a solution of problem (Eλ,μ), such that u− � 0, v− � 0 in Ω and u− �= 0, v− �= 0.
0 0 0 0 0 0
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Proof. Let {(un, vn)} be a minimizing sequence for Jλ,μ on N−
λ,μ. Then by Lemma 2.1 and the compact imbedding

theorem there exist a subsequence {(un, vn)} and (u−
0 , v−

0 ) ∈ H such that

un ⇀ u−
0 weakly in H 1

0 (Ω),

un → u−
0 strongly in Lq(∂Ω) and in Lα+β(Ω),

vn ⇀ v−
0 weakly in H 1

0 (Ω),

vn → v−
0 strongly in Lq(∂Ω) and in Lα+β(Ω).

This implies

Kλ,μ(un, vn) → Kλ,μ

(
u−

0 , v−
0

)
as n → ∞,∫

Ω

f |un|α|vn|β →
∫
Ω

f
∣∣u−

0

∣∣α∣∣v−
0

∣∣β as n → ∞.

Moreover, by (2.3) we obtain∫
Ω

f |un|α|vn|β dx >
2 − q

α + β − q

∥∥(un, vn)
∥∥2

H
. (3.4)

By (2.5) and (3.4) there exists a positive number �C such that∫
Ω

f |un|α|vn|β dx > �C.

This implies∫
Ω

f
∣∣u−

0

∣∣α∣∣v−
0

∣∣β dx � �C. (3.5)

Now we prove that

un → u−
0 strongly in H 1

0 (Ω),

vn → v−
0 strongly in H 1

0 (Ω).

Suppose otherwise, then either ‖u−
0 ‖H 1 < lim infn→∞ ‖un‖H 1 or ‖v−

0 ‖H 1 < lim infn→∞ ‖vn‖H 1 . By Lemma 2.6,
there is a unique t−0 such that (t−0 u−

0 , t−0 v−
0 ) ∈ N−

λ,μ. Since (un, vn) ∈ N−
λ,μ, Jλ,μ(un, vn) � Jλ,μ(tun, tvn) for all

t � 0, we have

Jλ,μ

(
t−0 u−

0 , t−0 v−
0

)
< lim

n→∞Jλ,μ

(
t−0 un, t

−
0 vn

)
� lim

n→∞Jλ,μ(un, vn) = θ−
λ,μ

and this is contradiction. Hence

un → u−
0 strongly in H 1

0 (Ω),

vn → v−
0 strongly in H 1

0 (Ω).

This implies

Jλ,μ(un, vn) → Jλ,μ

(
u−

0 , v−
0

) = θ−
λ,μ as n → ∞.

Since Jλ,μ(u−
0 , v−

0 ) = Jλ,μ(|u−
0 |, |v−

0 |) and (|u−
0 |, |v−

0 |) ∈ N−
λ,μ, by Lemma 2.2 and (3.5) we may assume that

(u−
0 , v−

0 ) is a solution of problem (Eλ,μ), such that u−
0 � 0, v−

0 � 0 in Ω and u−
0 �= 0, v−

0 �= 0. �
Now, we complete the proof of Theorem 1.1: By Theorems 3.1, 3.2 problem (Eλ,μ) has two solutions (u+

0 , v+
0 ) ∈

N+
λ,μ and (u−

0 , v−
0 ) ∈ N−

λ,μ such that u±
0 � 0, v±

0 � 0 in Ω and u±
0 �= 0, v±

0 �= 0. Since N+
λ,μ ∩ N−

λ,μ = ∅, this implies

that (u+
0 , v+

0 ) and (u−
0 , v−

0 ) are distinct. Moreover, if f � 0, then by the maximum principle we obtain u±
0 > 0, v±

0 > 0
in Ω.
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