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Abstract

In this paper, we study the combined effect of concave and convex nonlinearities on the number of solutions for a semilinear
elliptic system (E),_ ;) involving nonlinear boundary condition and sign-changing weight function. With the help of the Nehari
manifold, we prove that the system has at least two nontrivial nonnegative solutions when the pair of the parameters (X, 1) belongs
to a certain subset of R2.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we consider the multiplicity results of nontrivial nonnegative solutions of the following semilinear
elliptic system:

—Au+u=ﬁf(x)|u|a—2u|v|ﬁ in £2,
—Av+v =z F0lul v~y in £2, (Exp)
Su =g ul?2u, = ph)|v[4"% on s,

where £2 is a bounded domain in RY with smooth boundary, « > 1, 8 > 1 satisfying 2 < a + 8 < 2* (2* = % if

N >3,2*=00if N =2), 1 < g <2, the pair of parameters (A, u) € R?\ {(0, 0)} and the weight functions f, g, h
are satisfying the following conditions:

(A) feC(R) with || fllo =1and f* =max{f, 0} #0;
(B) g,h € C(382) with ||glleo = llAllec = 1, g& = max{£g, 0} # 0 and h* = max{=+h, 0} £ 0.

* Corresponding author.
E-mail addresses: k.j.brown@ma.hw.ac.uk (K.J. Brown), tfwu@nuk.edu.tw (T.-F. Wu).
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Semilinear elliptic problems with nonlinear boundary condition are widely studied; we refer the reader to Garcia-
Azorero, Peral and Rossi [5] and Wu [6,7]. Recently, in [6] the author considered a semilinear elliptic equation
involving sign-changing weight function, and showed multiplicity results with respect to the parameter via the extrac-
tion of Palais-Smale sequences in the Nehari manifold.

Because the two sublinear boundary conditions in problem (E} ;) are homogeneous of the same degree ¢ — 1 and
so the problem (E} ;) is similar to the Ambrosetti, Brezis and Cerami problem [1] (a semilinear elliptic equation
involving concave and convex nonlinearities). Thus, the existence of more than one nontrivial solution for problem
(E;., ) is expected. In this paper, we give a very simple variational method which is similar to the “fibering method” of
Pohozaev’s (see [3] or [4]) to prove the existence of at least two nontrivial nonnegative solutions of problem (Ej ;).
In particular we do this without the extraction of Palais-Smale sequences in the Nehari manifold. Throughout this
section, we let S and S be the best Sobolev and the best Sobolev trace constants for the embedding of HO1 (£2) in

L*TP(£2) and Hy (£2) in L9(52), respectively. And let Co = (£)/*~9C(a, B, g, S, S) be a positive number where
— — 2

Ca, B,q,8,8) = (% S“+ﬁ)2/(2_°‘_ﬁ)(% S$749)7=4 . Then we have the following result.

Theorem 1.1. If the parameters A, . satisfy

2 2
0 < A7 +|ul™7 < Co,

then problem (E, ) has at least two solutions (u(';, v(';) and (uy , vy ) such that u(j)E >0, v(:)IE >0in 2 and u(f #0,

v(jf # 0. Furthermore, if f >0, then u(:)t >0, voi >0in $2.

This paper is organized as follows. In Section 2, we give some the properties of the Nehari manifold. In Section 3,
we prove Theorem 1.1.

2. Nehari manifold

Problem (E} ;) is posed in the framework of the Sobolev space H = H 1(§£2) x H'(§2) with the standard norm

l@w, v, = (/(qu|2+u2)dx+/(|Vv|2+v2)dx>7.
2 2

Moreover, a pair of functions (#, v) € H is said to be a weak solution of problem (Ej ) if
o

/(ww +ugr) dx + /(VUV<P2 +ognydx — —2— [l uplfordy — —L— [ v dx
oa+p o+ p
2 2 2 2

—A / glul?2upyds — / hlv|?2vgyds =0
882 882
for all (¢1, ¢2) € H. Thus, the corresponding energy functional of problem (E} ;) is defined by

Fop ) = 2@ ) —L/flulalvlﬂdx—llﬁ (u, v)
Ny ’ 2 ’ H Q{+/3 q S I
2

for (u,v) € H, where K;, ,,(u, v) = A [y glul?ds + p [, hlv|?ds.
As the energy functional J, , is not bounded below on H, it is useful to consider the functional on the Nehari
manifold

Ny = {@,v) € H\{©0,0)} | ({J; ,(,v), (u,v))=0}.
Thus, (4, v) €N, , if and only if

(Jy ., v), (u,v)) = ||(u,v)||§{—ff|u|“|v|ﬁdx—Km(u,v)zo. 2.1)
2

Note that N, ;, contains every nonzero solution of problem (E;, ). Moreover, we have the following results.
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Lemma 2.1. The energy functional J,, ,, is coercive and bounded below on N;, .

Proof. If (u,v) € N, ,, then by the Sobolev imbedding theorem

_2 _
JA,,L(u,v)=“+ﬂ ||(u,v)||§_1—<a+ﬂ q)KM(u,v)

2@+ pB) qga@+pB)
a+p—2 2 (e tB—q 2 25 q
> Saip 1wl =S (4“(”@ )(MI2 +10179) 2 ) |- 22)

Thus, J;, is coercive and bounded below on N, . O

Define

Dy, v) = (J;y |, (u,v), (u,v)).
Then for (u, v) € Ny 4,

(@5, (. v), (,v)) =2 (u, v) ||§, —( +ﬁ)/f|u|°‘|v|ﬂ dx — qK;. . (u,v) (2.3)
2
=(2—a—ﬁ)/f|u|“|v|’3dx—(q—2)Kx,u(u,v). (2.4)
2

Now, we split N;_, into three parts:
Ny, ={@.v) €Ny | (@, . v), (u,v)) > O};
N) , ={@.v) €Ny [(®] (. v), (u,v))=0}:
No.= {w,v)eNy | (CDi’M(u, v), (u,v)) < 0}.

Then, we have the following results.

Lemma 2.2. Suppose that (uo,vo) is a local minimizer for Jy , on Ny, and that (uo,vo) ¢ Ng,u' Then
J)’L’M(uo, vo) =0 in H™! (the dual space of the Sobolev space H).

Proof. Our proof is almost the same as that in Brown and Zhang [3, Theorem 2.3] (or see Binding, Drabek, and
Huang [2]). O

Lemma 2.3. We have

G) if (u,v) € N;M, then K;_,,(u, v) > 0;
i) if (w,v) € N?L’H, then K, (u,v) >0 and f_Q flul®w|Pdx > 0;
(iii) if (u,v) €Ny, then [, Flul®v|fdx > 0.

Proof. The proof is immediate from (2.1) and (2.4). O
Moreover, we have the following result.

Lemma 2.4. If

2 2 i
0<|[A> +|u|*7 <C(a,B.q,S,9),

then NE\),M =.
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Proof. Suppose otherwise, that is there exists (A, u) € R2 \ {(0, 0)} with

2 2 —
0 <A +|ul>7 <C(a,B,q,S,S)
such that N?L’M # (). Then for (u, v) € Ng,u we have

= (], .0, (1, 0)) = 2 = )@, )3, — (@ + B —q)/flul"‘lvl’gdx

2
=Q-a—PB)|w vy —(@—a—B K . v).
By the Holder inequality and the Sobolev imbedding theorem,

J
lw ], > (msaﬂ?) et
q

2 _
and
1
a+p—q\4 < 2\
, < | —r= S22 (| b=t q 7-7)2
| v, <a+ﬂ—2> 7 (1M 4 |l 29)2.
This implies
_g_ _
I/\I2 i+ |ule = Cle, B,q.S,9)

which is a contradiction. Thus, we can conclude that if

0< I?»I2 7+ |pl? ™ <C@B.4.5,9),

we have Ng w= h. O

By Lemma 2.4, we write Ny , = N;M U Nk_,u and define

9):’:“: inf+ S (u, v); 0= inf  Ju(uv).
(u,v)eNMi (u,v)eN)\.M

Then we have the following result.

Theorem 2.5. If 0 < |)L|2 74 |u|? ‘1 < Cy, then we have

@ 9;,# <0
(ii) Q;M > dy for some dy = dy(«, B, q,f, S, A, 1) > 0.

Proof. (i) Let (u,v) € N;\F .By (2.3)

a—i—ﬂ ”(u U)HH ff|u| [v|? dx

and so

Jipu(u,v) = .1 ”(u,v)”2+ 1t flul®|? dx
2 ¢q - \q o+
2
11 1 1 2—gq 2
<(G-0)+ (G axp)aza e Il

C-qa+p=2), 5o
~arp 10l <0

1329
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Thus, 6, , < 0.
(ii) Let (u,v) €N, . By (2.3)

W”(u U)HH /f|14| vl dx.

Moreover, by the Sobolev imbedding theorem

/f|u|°‘|v|ﬂdx<S“+ﬂ||<u,v)}|i,+ﬂ.

This implies
2—q T _
||(u,v)||H> (o +p—q)Seth for all (u,v) €Ny ,. (2.5)
By (2.2) in the proof of Lemma 2.1
a+pB—2 (oz—l—,B q> 2 2 Zq]
T, v) = |, )| NN
T L e (O A C e [T

2—gq a5
> _—
((Ol+,3—61)5"‘+‘3>

2—q
atp-2( 274 m_—q<w> 2 —]
X[Z(a+ﬁ)((a+ﬂ—q)sa+ﬁ) § 7@+ B (12 |“+|M|2) .

O<|?»|2‘1-|r|M| = < Co,

Thus, if

then
Jrou(u,v) >dy forall (u,v) € N w

for some do = do(a, B, g, S, S, A, ;t) > 0. This completes the proof. O

For each (u, v) € H with fQ Flul®v|P dx > 0, we write

fmax = -l 3 T2 .
(@+B—q) o flul*lv|Pdx

Then the following lemma hold.

Lemma 2.6. For each (u,v) € H with fQ flul*|v|f dx > 0, we have

(1) if Ky, (u,v) <0, then there is unique t~ > tyax Such that (t"u,t"v) € N;M and

Joon(t7u, t7v) =sup Sy (tu, tv);

[
(i) if Ky, .(u, v) > 0, then there are unique 0 < t+ < tmax <t~ such that (tTu,t+v) € N} o (tTutTv) Ny and
Jk,u(ﬁu, t+v) = inf Jy u(tu,tv); Jk,ﬂ(t_u, t_v) =sup J;, . (tu, tv).
0<7 <tmax >0

Proof. Fix (u,v) € H with [, f|u|*|v|? dx > 0. Let

m(z)=t2—q||(u,v)||§1—r“+ﬁ—‘1/f|u|“|u|ﬁdx for 1 > 0. (2.6)
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Clearly, m(0) =0, m(t) - —oo as t — 00. Since
n/a>=<2—qnlﬂﬂhwvﬂﬁ,—(a+¢3—q»“+ﬁw—1/1ﬂuWhnﬂdx
Q

we have m/(t) =0 at t = tiax, m’'(t) > 0 for t € [0, fmax) and m’(z) < 0 for t € (tmax, 00). Then m(t) achieves its
maximum at fyx, i increasing for ¢ € [0, tmax) and decreasing for ¢ € (fnax, 00). Moreover,

_g \F N N
mtiman) = [ 0| (22 L) (22 )T (e )
#\a+p—q a+p—q Jo FluleTolP dx

2—q
a+B=2\({a+B—q , 2-a—p
>wmvwz(a+ﬁ_q)( 2—¢ Sﬁﬁ) ' @7

(i) K, (1, v) <0. There is a unique 1~ > fmqx such that m(r~) = K, , (4, v) and m’(t~) < 0. Now,

2- q)(t_)QH (u,v) ||2 —(a+B— q)(t_)(H’5 / Flulvfdx = (t_)qu/(t_) <0,
2

and
(Jﬁ!u(fu, fv), (fu, fv)) = (f)q [m(f) — Ky pu(u, v)] =0.
Thus, (t u,t"v) € N;’M. Since for t > tyax, We have

2 d’
Q—q)|Cu, 10| — @+ 8 —q)/f|m|“|zv|/S dx <0, ﬁh,“(m,zv) <0
2

and

d
EJA,M(WJU)ZI‘“(M,U)”Z—thA,M(u,v)—ta+ﬁ/f|u|a|v|ﬁdx=0 fort=1".
2

Thus, J;, ,(tTu,t7v) = sup; > S u(tu, tv).
(ii) Ky, (u, v) > 0. By (2.7) and
m(0) =0
< K u(u,v)
— 2 2 24 q
<SOMT + 11l 70) T |, ],

a+pB-2\(a+B—q =
() (25

< M (tmax),
for 0 < |)\|ﬁ + |u|ﬁ <C(a, B, q,S,S), there are unique T and ¢~ such that 0 < 1T < fpax <17,
m(t+) =Ky, (u,v)= m(t_)
and
m'(t7)>0>m'(t7).

We have (tTu,ttv) e N;\ru, (tTu,t7v) €Ny s and Ty (07w, 17 0) = Sy (tu, o) > (T u, 1) for each 1 €

[t*, ¢t 1and Jy , (tTu, tTv) < J; u(tu, tv) for each ¢ € [0, t1]. Thus,
JA,M(PLM, t+v) :0 inf  Jy . (tu, tv); J;L,H(fu, fv) =sup Jy, . (tu, tv).
0

SIS Tmax >

This completes the proof. O
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For each (u, v) € H with K;_,(u,v) > 0, we write

P ((a +B8- q)Kx,u(u,;)))m - 0. 28)
(4B —=2)(u,v)y

Then we have the following lemma.

Lemma 2.7. For each (u,v) € H with K; ,(u,v) > 0, we have

@ if [o Flul®|v|f dx <0, then there is unique 0 < t+ < tyax such that (tTu,tTv) € N;tu and
JML(tJru, t+v) = tigg Jou(tu, tv);

+

(i1) lfo Flul®|v|f dx > 0, then there are unique 0 < t+ < fyax <t~ such that (t7u, t+v) € Nx,w

and

(t"u,t"v)e Nx_,u

Sop(Tuttv) = inf  Jy u(tu, tv); o (t"u t7v) =sup J , (tu, tv).
0<1 <fmax >0

Proof. Fix (u,v) € H with K, , (u,v) > 0. Let

m(t) =127 (u, v) ||il — 197" PK; L, (u,v) fort>0. (2.9)
Clearly, m(t) — —oo as t — 0T, m(t) — 0 as t — oo. Since

_ o — 2 —a—B—

' ()=Q2—a—Pt" Pl v, —(q—oa—pri*PKG )

we have m/(t) = 0 at t = fyax, M/ (t) > 0 for t € [0, pax) and m'(t) < O for ¢ € (tmax, 00). Then mi(z) achieves
its maximum at 7.y, is increasing for ¢ € (0, fmax) and decreasing for ¢ € (fmax, ©0). Similar to the argument in
Lemma 2.6, we can obtain the results of Lemma 2.7. O

3. Proof of Theorem 1.1

First, we establish the existence of a local minimum for J;, ,, on Nf u

2 2
Theorem 3.1. [f 0 < |A|27 + |u|>7 < Cy, then J, , has a minimizer (u(')", v(')") in NIM and it satisfies

() Jipu(ug,vg) =6

(i1) (ug, vg) is a solution of problem (E), ), such that ug >0, vS‘ >0in 2 and ug)’_ #0, v; #0.

Proof. Let {(u,, v,)} be a minimizing sequence for J , on N)t u Then by Lemma 2.1 and the compact imbedding

theorem, there exist a subsequence {(u,, v,)} and (u(‘)Ir , v(‘)Ir ) € H such that (ug , v(')|r ) is a solution of problem (Ej ;)
and

U, — ug' weakly in HO1 (£2),

up — ug  strongly in L9(3£2) and in LR (52),

v, = v(‘; weakly in HO1 (£2),

v — v§  strongly in L9(3£2) and in L*P ().
This implies

+ o
K)L,u(unsvn)_)K)\,u(uosUO) asn — o0,

[ sttt = [ sl ol asn oo
2 2
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Since

a+p—2
2(x+B)
and by Theorem 2.5(i)

a+pB—q

7@+ B) K)»,p.(unv Un)

JA,,U,(uns Up) = ”(u"’v")Hi] -

Joou(Up, vy) — G)TM <0 asn— oo.

Letting n — oo, we see that KA,M(M?)_, var) > 0. Now we prove that
Uy — u(‘)Ir strongly in H' (2),
vy — v(‘)|r strongly in H'(2).
Supposing the contrary, then either
lug |1 <timinf lunllgor ug || 1 < liminf flv, | 1. (3.1

Fix (u,v) € H with K ,(u,v) > 0. Let

B () =m(t) — / Flul®v)? dx
22

where m(t) is as in (2.9). Clearly, ¢(,.y)(t) — —oco ast — 01 and

O () = —ff|u|“|v|ﬂdx ast — 00.
2

Since ¢2u ) (1) = m’(t), similar argument as in the proof of Lemma 2.7 we have ¢, ,(#) achieves its maximum at
Imax (1, V), is increasing for ¢ € (0, fmax (#, v)) and decreasing for ¢ € (fmax (1, v), 00), where

@+ — K. v))ﬁ
@+ B —2)llw. v,

is as in (2.8). Since K)\,M(u(‘)", v(_)") > (0, by Lemma 2.7, there is a unique 0 < tg' < fmax(ug, v(')") such that
+ + 4o+ +
(tg ug -ty vg) € Nk,u and

Tmax (U, V) = (

+ o+ 44 : + .+
Jk»ﬂ(to uy by vy ) = _inf . J;\,M(tuo , tug )
07 Smax (ug ,vg )

Then

b ) = ) (165050 1y = Ko ) = [ 1l o ax) =0, @
2

By (3.1) and (3.2) we obtain
¢(un,vn)(t(;k ) >0 for n sufficiently large. 3.3)

Since (u,, v,) € N)tu’ we have fimax (s, vy) > 1. Moreover,

2
¢(un,v,,)(1) = “ (un, Un)”H - KA,u(unv Up) — / f|un|alvn|ﬂdx =0
2

and ¢, v,)(?) is increasing for ¢ € (0, fmax (U, vy)). This implies ¢, .v,) () < 0 for all ¢ € (0, 1] and n sufficiently
large. We obtain 1 < t(;r < fmax(ua’, v(J)’). But (tgua', tgrva') € N)tu and

+o . + 4
S tgug 1vd) = inf . S (tug o).
07 Smax (ug ,vg )
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This implies

+

Tt ug 10y ) < Do (ug s vg) < nlglgo Juw(tn, vp) =057,

which is a contradiction. Hence
Uy —> ua' strongly in H' (),
v, —> vg strongly in Hl(.Q).
This implies
T, v) = D u(ugd vf) = GIM as n — 00.
+

A
by Lemma 2.2 we may assume that (u(")F, vJ ) is a nonnegative solution of problem (E} ,). Finally, we prove that

uar #0, vO+ # 0. We assume that, without loss of generality, vo+ = 0. Then as uar is a nonzero solution of
{ —Au+u=0 in £2,

Thus, (ug,vy) is a minimizer for J; , on N} . Since Ji . (ug, vy) = Jiu(lug |, vy ) and (Jug ], [vg]) € N

31 = 2g()|ul97%u on 3L,

n

we have

2
Jug Vi = [ s as = o.
FYe;
Moreover, by the conditions (A), (B) we may choose w € H L2) \ {0} such that

w7 ZM/hIwI"dS>0
82
and

/f|ug\“|w|ﬂ dx > 0.
2

Now

K,\,,L(uar,w):A/g|u5r|qu+/¢/h|w|qu>0
FYel 00

and so by Lemma 2.7 there is a unique 0 <t < Zmax such that (tTug, tTw) € NJ .- Moreover,

1 1
: _((a+ﬂ—q)K;h,L(uar,w)>ﬁ_(oc—l—ﬂ—q)ﬁ>1
N @+ B2l w a+p—2
and
o (ttuf itw)= inf J tul, tw).
it ) = iy )
This implies

+,+ + + 0) =+
JML(I ug,t w) < JML(MO , w) < JML(MO ,O) _QA,M
which is a contradiction. O
Next, we establish the existence of a local minimum for J;, , on N .

2 2
Theorem 3.2. If 0 < |A|>~4 + |u|> < Co, then Jy ,, has a minimizer (u , v ) in NA_,;L and it satisfies

(® JA,/L(Maa U(;) = 9;:11;
(ii) (uy,vy)isa solution of problem (Ej ), such that ug =20,vy 20in 2 and uy #0,v, #0.
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Proof. Let {(u,, v,)} be a minimizing sequence for J; , on N;) w Then by Lemma 2.1 and the compact imbedding

theorem there exist a subsequence {(u,, v,)} and (1, v, ) € H such that
un —uy  weakly in Hy (£2),
u, — u,, strongly in L7(3£2) and in LoHP(£2),
v, =~ v, weakly in HO1 (£2),
v, = v, strongly in L7(d£2) and in Lo ().
This implies

K (s vn) = K pu(ug ,vy) asn— oo,
[ ratnt? = [ slugllog - asm— oo
2 2

Moreover, by (2.3) we obtain

2 —
[ Autonl? dx = ==, v (34)
2

By (2.5) and (3.4) there exists a positive number C such that

/f|un|“|vn|ﬁdx >C.
2

This implies
/f|u5|“|vo—|ﬂdx >T. (3.5)
2

Now we prove that
uy, — u, strongly in H(} (£2),
v, —> v, strongly in HO1 (£2).
Suppose otherwise, then either [Jug || g1 < liminf,— o0 [l |l g1 or [lvg | g1 < liminf,— oo [|Unll 1. By Lemma 2.6,

there is a unique 7, such that (t, uy, 7, vy ) € N;M. Since (uy,v,) € N;M, JoouUn, V) = Iy (tup, tu,) for all
t > 0, we have

Tty ug 19 vg) < W Ty (tg . tg vn) < Hm Ty py(un, v0) =0,
and this is contradiction. Hence

uy, — u, strongly in H(} (£2),

v, = v, strongly in H(} (£2).
This implies

T (s V) = T (ug vy ) =6, asn— oo.

Since Jy u(uy,vy) = D pu(lug |, vy ) and (lug |, vy |) € N):M, by Lemma 2.2 and (3.5) we may assume that
(1 , vy ) is a solution of problem (E;, ), such thatuy > 0,vy 2 0in £ andu, #0,v, #0. O

Now, we complete the proof of Theorem 1.1: By Theorems 3.1, 3.2 problem (E; ;) has two solutions (u('; , vg ) e
Ny, and (ug,vy) €Nj, such that ug >0, vy >0in £ and ug #0, vy #0. Since N | NN, , =, this implies
that (uaL , v(‘{ ) and (u , v, ) are distinct. Moreover, if f > 0, then by the maximum principle we obtain uat >0, voi >0
in £2.
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