1,006 research outputs found

    Hamiltonian Formalism of the de-Sitter Invariant Special Relativity

    Full text link
    Lagrangian of the Einstein's special relativity with universal parameter cc (SRc\mathcal{SR}_c) is invariant under Poincar\'e transformation which preserves Lorentz metric ημν\eta_{\mu\nu}. The SRc\mathcal{SR}_c has been extended to be one which is invariant under de Sitter transformation that preserves so called Beltrami metric BμνB_{\mu\nu}. There are two universal parameters cc and RR in this Special Relativity (denote it as SRcR\mathcal{SR}_{cR}). The Lagrangian-Hamiltonian formulism of SRcR\mathcal{SR}_{cR} is formulated in this paper. The canonic energy, canonic momenta, and 10 Noether charges corresponding to the space-time's de Sitter symmetry are derived. The canonical quantization of the mechanics for SRcR\mathcal{SR}_{cR}-free particle is performed. The physics related to it is discussed.Comment: 24 pages, no figur

    Room temperature ferromagnetism in chemically synthesized ZnO rods

    Full text link
    We report structural and magnetic properties of pure ZnO rods using X-ray diffraction (XRD), magnetization hysteresis (M-H) loop and near edge x-ray fine structure spectroscopy (NEXAFS) study at O K edge. Sample of ZnO was prepared by co-precipitation method. XRD and selective area electron diffraction measurements infer that ZnO rods exhibit a single phase polycrystalline nature with wurtzite lattice. Field emission transmission electron microscopy, field emission scanning electron microscopy micrographs infers that ZnO have rod type microstructures with dimension 200 nm in diameter and 550 nm in length. M-H loop studies performed at room temperature display room temperature ferromagnetism in ZnO rods. NEXAFS study reflects absence of the oxygen vacancies in pure ZnO rods.Comment: 8 Pages, 3 Figure

    Molecular evidence of the haploid origin in wheat (Triticum aestivum L.) with Aegilops kotschyi cytoplasm and whole genome expression profiling after haploidization

    Get PDF
    Aegiolops kotschyi cytoplasmic male sterile system often results in part of haploid plants in wheat (Triticum aestivum L.). To elucidate the origin of haploid, 235 wheat microsatellite (SSR) primers were randomly selected and screened for polymorphism between haploid (2n = 3x = 21 ABD) and its parents, male-sterile line YM21 (2n = 6x = 42 AABBDD) and male fertile restorer YM2 (2n = 6x = 42 AABBDD). About 200 SSR markers yielded clear bands from denatured PAGE, of which 180 markers have identifiable amplification patterns, and 20 markers (around 8%) resulted in different amplification products between the haploid and the restorer, YM2. There were no SSR markers that were found to be distinguishable between the haploid and the male sterile line YM21. In addition, different distribution of HMW-GS between endosperm and seedlings from the same seeds further confirmed that the haploid genomes were inherited from the maternal parent. After haploidization, 1.7% and 0.91% of total sites were up- and down-regulated exceeding twofold in the shoot and the root of haploid, respectively, and most of the differentially expressed loci were up/down-regulated about twofold. Out of the sensitive loci in haploid, 94 loci in the shoot, 72 loci in the root can be classified into three functional subdivisions: biological process, cellular component and molecular function, respectively

    Argon annealing of the oxygen-isotope exchanged manganite La_{0.8}Ca_{0.2}MnO_{3+y}

    Full text link
    We have resolved a controversial issue concerning the oxygen-isotope shift of the ferromagnetic transition temperature T_{C} in the manganite La_{0.8}Ca_{0.2}MnO_{3+y}. We show that the giant oxygen-isotope shift of T_C observed in the normal oxygen-isotope exchanged samples is indeed intrinsic, while a much smaller shift observed in the argon annealed samples is an artifact. The argon annealing causes the 18O sample to partially exchange back to the 16O isotope due to a small 16O contamination in the Ar gas. Such a contamination is commonly caused by the oxygen outgas that is trapped in the tubes, connectors and valves. The present results thus umambiguously demonstrate that the observed large oxygen isotope effect is an intrinsic property of manganites, and places an important constraint on the basic physics of these materials.Comment: 4 pages, 3 figures, submitted to PR

    Spin-Glass State in CuGa2O4\rm CuGa_2O_4

    Full text link
    Magnetic susceptibility, magnetization, specific heat and positive muon spin relaxation (\musr) measurements have been used to characterize the magnetic ground-state of the spinel compound CuGa2O4\rm CuGa_2O_4. We observe a spin-glass transition of the S=1/2 Cu2+\rm Cu^{2+} spins below Tf=2.5K\rm T_f=2.5K characterized by a cusp in the susceptibility curve which suppressed when a magnetic field is applied. We show that the magnetization of CuGa2O4\rm CuGa_2O_4 depends on the magnetic histo Well below Tf\rm T_f, the muon signal resembles the dynamical Kubo-Toyabe expression reflecting that the spin freezing process in CuGa2O4\rm CuGa_2O_4 results Gaussian distribution of the magnetic moments. By means of Monte-Carlo simulati we obtain the relevant exchange integrals between the Cu2+\rm Cu^{2+} spins in this compound.Comment: 6 pages, 16 figure

    Polaron features of the one-dimensional Holstein Molecular Crystal Model

    Full text link
    The polaron features of the one-dimensional Holstein Molecular Crystal Model are investigated by improving a variational method introduced recently and based on a linear superposition of Bloch states that describe large and small polaron wave functions. The mean number of phonons, the polaron kinetic energy, the electron-phonon local correlation function, and the ground state spectral weight are calculated and discussed. A crossover regime between large and small polaron for any value of the adiabatic parameter ω0/t\omega_0/t is found and a polaron phase diagram is proposed.Comment: 12 pages, 2 figure

    Colossal magnetooptical conductivity in doped manganites

    Get PDF
    We show that the current carrier density collapse in doped manganites, which results from bipolaron formation in the paramagnetic phase, leads to a colossal change of the optical conductivity in an external magnetic field at temperatures close to the ferromagnetic transition. As with the colossal magnetoresistance (CMR) itself, the corresponding magnetooptical effect is explained by the dissociation of localized bipolarons into mobile polarons owing to the exchange interaction with the localized Mn spins in the ferromagnetic phase. The effect is positive at low frequencies and negative in the high-frequency region. The present results agree with available experimental observations.Comment: 4 pages, REVTeX 3.0, two eps-figures included in the tex

    On the effects of the magnetic field and the isotopic substitution upon the infrared absorption of manganites

    Full text link
    Employing a variational approach that takes into account electron-phonon and magnetic interactions in La1−xAxMnO3La_{1-x}A_xMnO_3 perovskites with 0<x<0.50<x<0.5, the effects of the magnetic field and the oxygen isotope substitution on the phase diagram, the electron-phonon correlation function and the infrared absorption at x=0.3x=0.3 are studied. The lattice displacements show a strong correlation with the conductivity and the magnetic properties of the system. Then the conductivity spectra are characterized by a marked sensitivity to the external parameters near the phase boundary.Comment: 10 figure

    Modification of the ground state in Sm-Sr manganites by oxygen isotope substitution

    Full text link
    The effect of 16^{16}O →\to 18^{18}O isotope substitution on electrical resistivity and magnetic susceptibility of Sm1−x_{1-x}Srx_xMnO3_3 manganites is analyzed. It is shown that the oxygen isotope substitution drastically affects the phase diagram at the crossover region between the ferromagnetic metal state and that of antiferromagnetic insulator (0.4 <x<< x < 0.6), and induces the metal-insulator transition at for xx = 0.475 and 0.5. The nature of antiferromagnetic insulator phase is discussed.Comment: 4 pages, 3 eps figures, RevTeX, submitted to Phys. Rev. Let
    • …
    corecore