95 research outputs found

    Coronal mass ejections as expanding force-free structures

    Full text link
    We mode Solar coronal mass ejections (CMEs) as expanding force-fee magnetic structures and find the self-similar dynamics of configurations with spatially constant \alpha, where {\bf J} =\alpha {\bf B}, in spherical and cylindrical geometries, expanding spheromaks and expanding Lundquist fields correspondingly. The field structures remain force-free, under the conventional non-relativistic assumption that the dynamical effects of the inductive electric fields can be neglected. While keeping the internal magnetic field structure of the stationary solutions, expansion leads to complicated internal velocities and rotation, induced by inductive electric field. The structures depends only on overall radius R(t) and rate of expansion \dot{R}(t) measured at a given moment, and thus are applicable to arbitrary expansion laws. In case of cylindrical Lundquist fields, the flux conservation requires that both axial and radial expansion proceed with equal rates. In accordance with observations, the model predicts that the maximum magnetic field is reached before the spacecraft reaches the geometric center of a CME.Comment: 19 pages, 9 Figures, accepted by Solar Physic

    Decomposition of the QCD String into Dipoles and Unintegrated Gluon Distributions

    Get PDF
    We present the perturbative and non-perturbative QCD structure of the dipole-dipole scattering amplitude in momentum space. The perturbative contribution is described by two-gluon exchange and the non-perturbative contribution by the stochastic vacuum model which leads to confinement of the quark and antiquark in the dipole via a string of color fields. This QCD string gives important non-perturbative contributions to high-energy reactions. A new structure different from the perturbative dipole factors is found in the string-string scattering amplitude. The string can be represented as an integral over stringless dipoles with a given dipole number density. This decomposition of the QCD string into dipoles allows us to calculate the unintegrated gluon distribution of hadrons and photons from the dipole-hadron and dipole-photon cross section via kT-factorization.Comment: 43 pages, 14 figure

    A QCD motivated model for soft interactions at high energies

    Full text link
    In this paper we develop an approach to soft scattering processes at high energies,which is based on two mechanisms: Good-Walker mechanism for low mass diffractionand multi-Pomeron interactions for high mass diffraction. The pricipal idea, that allows us to specify the theory for Pomeron interactions, is that the so called soft processes occur at rather short distances (r^2 \propto 1 /^2 \propto \alpha'_\pom \approx 0.01 GeV^{-2}), where perturbative QCD is valid. The value of the Pomeron slope \alpha'_\pom was obtained from the fit to experimental data. Using this theoretical approach we suggest a model that fits all soft data in the ISR-Tevatron energy range, the total, elastic, single and double diffractive cross sections, including tt dependence of the differential elastic cross section, and the mass dependence of single diffraction. In this model we calculate the survival probability of diffractive Higgs production, and obtained a value for this observable, which is smaller than 1% at the LHC energy range.Comment: 33pp,20 figures in eps file

    A Phenomenological Analysis of Gluon Mass Effects in Inclusive Radiative Decays of the J/ψ\rm{J/\psi} and $\Upsilon

    Full text link
    The shapes of the inclusive photon spectra in the processes \Jp \to \gamma X and \Up \to \gamma X have been analysed using all available experimental data. Relativistic, higher order QCD and gluon mass corrections were taken into account in the fitted functions. Only on including the gluon mass corrections, were consistent and acceptable fits obtained. Values of 0.7210.068+0.0160.721^{+0.016}_{-0.068} GeV and 1.180.29+0.091.18^{+0.09}_{-0.29} GeV were found for the effective gluon masses (corresponding to Born level diagrams) for the \Jp and \Up respectively. The width ratios \Gamma(V \to {\rm hadrons})/\Gamma(V \to \gamma+ {\rm hadrons}) V=\Jp, \Up were used to determine αs(1.5GeV)\alpha_s(1.5 {\rm GeV}) and αs(4.9GeV)\alpha_s(4.9 {\rm GeV}). Values consistent with the current world average αs\alpha_s were obtained only when gluon mass correction factors, calculated using the fitted values of the effective gluon mass, were applied. A gluon mass 1\simeq 1 GeV, as suggested with these results, is consistent with previous analytical theoretical calculations and independent phenomenological estimates, as well as with a recent, more accurate, lattice calculation of the gluon propagator in the infra-red region.Comment: 50 pages, 11 figures, 15 table

    Confining QCD Strings, Casimir Scaling, and a Euclidean Approach to High-Energy Scattering

    Get PDF
    We compute the chromo-field distributions of static color-dipoles in the fundamental and adjoint representation of SU(Nc) in the loop-loop correlation model and find Casimir scaling in agreement with recent lattice results. Our model combines perturbative gluon exchange with the non-perturbative stochastic vacuum model which leads to confinement of the color-charges in the dipole via a string of color-fields. We compute the energy stored in the confining string and use low-energy theorems to show consistency with the static quark-antiquark potential. We generalize Meggiolaro's analytic continuation from parton-parton to gauge-invariant dipole-dipole scattering and obtain a Euclidean approach to high-energy scattering that allows us in principle to calculate S-matrix elements directly in lattice simulations of QCD. We apply this approach and compute the S-matrix element for high-energy dipole-dipole scattering with the presented Euclidean loop-loop correlation model. The result confirms the analytic continuation of the gluon field strength correlator used in all earlier applications of the stochastic vacuum model to high-energy scattering.Comment: 65 pages, 13 figures, extended and revised version to be published in Phys. Rev. D (results unchanged, 2 new figures, 1 new table, additional discussions in Sec.2.3 and Sec.5, new appendix on the non-Abelian Stokes theorem, old Appendix A -> Sec.3, several references added

    Modeling the Subsurface Structure of Sunspots

    Get PDF
    While sunspots are easily observed at the solar surface, determining their subsurface structure is not trivial. There are two main hypotheses for the subsurface structure of sunspots: the monolithic model and the cluster model. Local helioseismology is the only means by which we can investigate subphotospheric structure. However, as current linear inversion techniques do not yet allow helioseismology to probe the internal structure with sufficient confidence to distinguish between the monolith and cluster models, the development of physically realistic sunspot models are a priority for helioseismologists. This is because they are not only important indicators of the variety of physical effects that may influence helioseismic inferences in active regions, but they also enable detailed assessments of the validity of helioseismic interpretations through numerical forward modeling. In this paper, we provide a critical review of the existing sunspot models and an overview of numerical methods employed to model wave propagation through model sunspots. We then carry out an helioseismic analysis of the sunspot in Active Region 9787 and address the serious inconsistencies uncovered by \citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find that this sunspot is most probably associated with a shallow, positive wave-speed perturbation (unlike the traditional two-layer model) and that travel-time measurements are consistent with a horizontal outflow in the surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic

    Microbial exposure during early human development primes fetal immune cells

    Get PDF
    Human fetal immune system begins to develop early during gestation, however factors responsible for fetal immune-priming remain elusive. We explored potential exposure to microbial agents in-utero and their contribution towards activation of memory T cells in fetal tissues. We profiled microbes across fetal organs using 16S-rRNA gene sequencing and detected low but consistent microbial signal in fetal gut, skin, placenta and lungs, in 2nd trimester of gestation. We identified several live bacterial strains including Staphylococcus and Lactobacillus in fetal tissues, which induced in vitro activation of memory T cells in fetal mesenteric lymph-node, supporting the role of microbial exposure in fetal immune-priming. Finally, using SEM and RNA-ISH, we visualised discrete localisation of bacteria-like structures and eubacterial-RNA within 14th week fetal gut lumen. These findings indicate selective presence of live-microbes in fetal organs during 2nd trimester of gestation and have broader implications towards establishment of immune competency and priming before birt

    The survival probability of large rapidity gaps in a three channel model

    Get PDF
    The values and energy dependence for the survival probability <S2>< \mid S\mid^2 > of large rapidity gaps (LRG) are calculated in a three channel model. This model includes single and double diffractive production, as well as elastic rescattering. It is shown that decreases with increasing energy, in line with recent results for LRG dijet production at the Tevatron. This is in spite of the weak dependence on energy of the ratio (σel+σSD)/σtot (\sigma_{el}+ \sigma_{SD})/\sigma_{tot}.Comment: 26 pages in latex file,11 figures in eps file

    The Physical Processes of CME/ICME Evolution

    Get PDF
    As observed in Thomson-scattered white light, coronal mass ejections (CMEs) are manifest as large-scale expulsions of plasma magnetically driven from the corona in the most energetic eruptions from the Sun. It remains a tantalizing mystery as to how these erupting magnetic fields evolve to form the complex structures we observe in the solar wind at Earth. Here, we strive to provide a fresh perspective on the post-eruption and interplanetary evolution of CMEs, focusing on the physical processes that define the many complex interactions of the ejected plasma with its surroundings as it departs the corona and propagates through the heliosphere. We summarize the ways CMEs and their interplanetary CMEs (ICMEs) are rotated, reconfigured, deformed, deflected, decelerated and disguised during their journey through the solar wind. This study then leads to consideration of how structures originating in coronal eruptions can be connected to their far removed interplanetary counterparts. Given that ICMEs are the drivers of most geomagnetic storms (and the sole driver of extreme storms), this work provides a guide to the processes that must be considered in making space weather forecasts from remote observations of the corona.Peer reviewe
    corecore