29 research outputs found

    Allen Telescope Array Multi-Frequency Observations of the Sun

    Full text link
    We present the first observations of the Sun with the Allen Telescope Array (ATA). We used up to six frequencies, from 1.43 to 6 GHz, and baselines from 6 to 300 m. To our knowledge, these are the first simultaneous multifrequency full-Sun maps obtained at microwave frequencies without mosaicing. The observations took place when the Sun was relatively quiet, although at least one active region was present each time. We present multi-frequency flux budgets for each sources on the Sun. Outside of active regions, assuming optically thin bremsstrahlung (free--free) coronal emission on top of an optically thick ~10 000 K chromosphere, the multi-frequency information can be condensed into a single, frequency-independent, "coronal bremsstrahlung contribution function" [EM/sqrt(T)] map. This technique allows the separation of the physics of emission as well as a measurement of the density structure of the corona. Deviations from this simple relationship usually indicate the presence of an additional gyroresonance-emission component, as is typical in active regions.Comment: 16 pages, 11 figures. Accepted for publication in Solar Physic

    Heliolatitude and time variations of solar wind structure from in situ measurements and interplanetary scintillation observations

    Get PDF
    The 3D structure of solar wind and its evolution in time is needed for heliospheric modeling and interpretation of energetic neutral atoms observations. We present a model to retrieve the solar wind structure in heliolatitude and time using all available and complementary data sources. We determine the heliolatitude structure of solar wind speed on a yearly time grid over the past 1.5 solar cycles based on remote-sensing observations of interplanetary scintillations, in situ out-of-ecliptic measurements from Ulysses, and in situ in-ecliptic measurements from the OMNI-2 database. Since the in situ information on the solar wind density structure out of ecliptic is not available apart from the Ulysses data, we derive correlation formulae between solar wind speed and density and use the information on the solar wind speed from interplanetary scintillation observations to retrieve the 3D structure of solar wind density. With the variations of solar wind density and speed in time and heliolatitude available we calculate variations in solar wind flux, dynamic pressure and charge exchange rate in the approximation of stationary H atoms.Comment: Accepted for publication in Solar Physic

    Solar parameters for modeling interplanetary background

    Full text link
    The goal of the Fully Online Datacenter of Ultraviolet Emissions (FONDUE) Working Team of the International Space Science Institute in Bern, Switzerland, was to establish a common calibration of various UV and EUV heliospheric observations, both spectroscopic and photometric. Realization of this goal required an up-to-date model of spatial distribution of neutral interstellar hydrogen in the heliosphere, and to that end, a credible model of the radiation pressure and ionization processes was needed. This chapter describes the solar factors shaping the distribution of neutral interstellar H in the heliosphere. Presented are the solar Lyman-alpha flux and the solar Lyman-alpha resonant radiation pressure force acting on neutral H atoms in the heliosphere, solar EUV radiation and the photoionization of heliospheric hydrogen, and their evolution in time and the still hypothetical variation with heliolatitude. Further, solar wind and its evolution with solar activity is presented in the context of the charge exchange ionization of heliospheric hydrogen, and in the context of dynamic pressure variations. Also the electron ionization and its variation with time, heliolatitude, and solar distance is presented. After a review of all of those topics, we present an interim model of solar wind and the other solar factors based on up-to-date in situ and remote sensing observations of solar wind. Results of this effort will further be utilised to improve on the model of solar wind evolution, which will be an invaluable asset in all heliospheric measurements, including, among others, the observations of Energetic Neutral Atoms by the Interstellar Boundary Explorer (IBEX).Comment: Chapter 2 in the planned "Cross-Calibration of Past and Present Far UV Spectra of Solar System Objects and the Heliosphere", ISSI Scientific Report No 12, ed. R.M. Bonnet, E. Quemerais, M. Snow, Springe

    Solar Surface Magnetism and Irradiance on Time Scales from Days to the 11-Year Cycle

    Full text link

    The 10.7 cm solar radio flux (F10.7)

    No full text
    Peer reviewed: YesNRC publication: Ye
    corecore