29 research outputs found

    Scaling ozone responses of forest trees to the ecosystem level in a changing climate

    Full text link
    Many uncertainties remain regarding how climate change will alter the structure and function of forest ecosystems. At the Aspen FACE experiment in northern Wisconsin, we are attempting to understand how an aspen/birch/maple forest ecosystem responds to long-term exposure to elevated carbon dioxide (CO 2 ) and ozone (O 3 ), alone and in combination, from establishment onward. We examine how O 3 affects the flow of carbon through the ecosystem from the leaf level through to the roots and into the soil micro-organisms in present and future atmospheric CO 2 conditions. We provide evidence of adverse effects of O 3 , with or without co-occurring elevated CO 2 , that cascade through the entire ecosystem impacting complex trophic interactions and food webs on all three species in the study: trembling aspen ( Populus tremuloides Michx . ), paper birch ( Betula papyrifera Marsh), and sugar maple ( Acer saccharum Marsh). Interestingly, the negative effect of O 3 on the growth of sugar maple did not become evident until 3 years into the study. The negative effect of O 3 effect was most noticeable on paper birch trees growing under elevated CO 2 . Our results demonstrate the importance of long-term studies to detect subtle effects of atmospheric change and of the need for studies of interacting stresses whose responses could not be predicted by studies of single factors. In biologically complex forest ecosystems, effects at one scale can be very different from those at another scale. For scaling purposes, then, linking process with canopy level models is essential if O 3 impacts are to be accurately predicted. Finally, we describe how outputs from our long-term multispecies Aspen FACE experiment are being used to develop simple, coupled models to estimate productivity gain/loss from changing O 3 .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72464/1/j.1365-3040.2005.01362.x.pd

    Use of needle epicuticular wax chemical composition in the early diagnosis of Norway spruce (Picea abies (L.) Karst.) decline in Europe.

    No full text
    To evaluate the potential of wax composition in the early detection of tree decline wax composition was analysed on needles collected from Norway spruce trees growing at 12 European sites representing 7 different “pollution climates” (SO2, NOx, H+). Cluster analysis successfully grouped trees by “pollution climates” based on wax composition analysed by GC. Over 70% of total variance was accounted for in the first three eigenvalues of the correlation matrix. German sites were segregated from Netherlands and UK sites. Sites receiving highest N deposition were tightly clustered as were sites receiving lowest pollutant loads. Epicuticular wax chemical composition has potential as an early indicator of change in tree condition due to air pollutant impact

    Leaf surface characteristics of Betula papyrifera exposed to elevated CO2 and O3

    No full text
    Betula papyrifera trees were exposed to elevated concentrations of CO2 (1.4 × ambient), O3 (1.2 × ambient) or CO2 + O3 at the Aspen Free-air CO2 Enrichment Experiment. The treatment effects on leaf surface characteristics were studied after nine years of tree exposure. CO2 and O3 increased epidermal cell size and reduced epidermal cell density but leaf size was not altered. Stomatal density remained unaffected, but stomatal index increased under elevated CO2. Cuticular ridges and epicuticular wax crystallites were less evident under CO2 and CO2 + O3. The increase in amorphous deposits, particularly under CO2 + O3, was associated with the appearance of elongated plate crystallites in stomatal chambers. Increased proportions of alkyl esters resulted from increased esterification of fatty acids and alcohols under elevated CO2 + O3. The combination of elevated CO2 and O3 resulted in different responses than expected under exposure to CO2 or O3 alone. © 2009 Elsevier Ltd. All rights reserved

    Photosynthetic responses of aspen clones to simultaneous exposures of ozone and CO2

    No full text
    Current projections indicate steady increases in both tropospheric ozone and carbon dioxide well into the next century with concurrent increases in plant stress. Because information about effects of these interacting stresses on forest trees is limited, we have conducted ozone and carbon dioxide experiments using ozone-tolerant and ozone-sensitive trembling aspen clones. Aspen plants were grown either in pots or in the ground in open-top chambers. Plants in the square-wave study were exposed for a single growing season to charcoal-filtered air or to CFplus elevated carbon dioxide, ozone,

    Interacting elevated CO2 and tropospheric O3 predisposes aspen (Populus tremuloides Michx.) to infection by rust (Melampsora medusae f. sp. tremuloidae)

    No full text
    We investigated the interaction of elevated CO2 and/or (Ozone) O3 on the occurrence and severity of aspen leaf rust (Melampsora medusae Thuem. f. sp. tremuloidae) on trembling aspen (Populus tremuloides Michx.), Furthermore, we examined the role of changes in leaf surface properties induced by elevated CO2 and/or O3 in this host-pathogen interaction. Three- to five-fold increases in levels of rust infection index were found in 2 consecutive years following growing-season-long exposures with either O3 alone or CO2 + O3 depending on aspen clone. Examination of leaf surface properties (wax appearance, wax amount, wax chemical composition, leaf surface and wettability) suggested significant effects by O3 and CO2 + O3. We conclude that elevated O3 is altering aspen leaf surfaces in such a way that it is likely predisposing the plants to increased infection by aspen leaf rust

    Impacts of air pollutants on vegetation in developing countries

    No full text
    The predicted increases in emissions of primary pollutants in many rapidly industrializing countries may have severe consequences for the health and productivity of forest trees and agricultural crops. This paper presents a review of air pollution impacts on vegetation in developing countries by summarising information describing the direct impacts to vegetation caused by a number of air pollutants (sulphur dioxide (SO2), nitrogen oxides (NOx), ozone (O3) and Suspended Particulate Matter (SPM)). This information has been collected by experts from a number of rapidly industrializing countries in Asia, Latin America and Africa and includes observations of visible injury in the field and the use of transect studies and controlled experimental investigations to ascribe damage to different pollutant concentrations. The ability to synthesise this information to define exposure-response relationships and subsequent air quality guidelines similar to those established in North America and Europe is assessed. In addition, the use of regional and global models describing pollution concentrations is discussed with reference to assessing the extent of adverse impacts and identifying regions likely to be most at risk from air pollution, both for the present day and in the future. The evidence summarised in the paper clearly shows that current pollutant concentrations experienced in many developing countries, particularly Asia, can result in severe damage to vegetation and that without appropriate control measures such damage is likely to worsen in the future as pollutant emissions increase
    corecore