119 research outputs found

    Use of plasma DNA to predict mortality and need for intensive care in patients with abdominal pain

    Get PDF
    Background We investigated the value of plasma deoxyribonucleic acid concentrations in patients presenting with acute abdominal pain to predict need for intensive care or mortality. Methods Plasma deoxyribonucleic acid taken from patients with acute abdominal pain was analyzed for the β-globin gene using the quantitative polymerase chain reaction. The primary outcome measure was the combined 28-day mortality or admission to the intensive care unit. Results Of 287 consecutive patients with acute abdominal pain recruited, 12 patients were admitted to the intensive care unit and/or died. Median plasma DNA concentrations were higher in patients with cancer and major organ inflammation. Mean plasma DNA concentrations were three-fold higher in patients with systemic inflammatory response syndrome, five-fold higher in patients who died within 28 days, and eight-fold higher in patients admitted to the intensive care unit. The area under the receiver operator curve for plasma DNA concentrations and intensive care unit admission/mortality was 0.804. At a cut-off of 1100 GE/ml, the sensitivity was 67% (95%CI 35–90) and specificity was 89% (95%CI 84–92). At a cut-off of 175 GE/ml, the sensitivity was 100% (95%CI 73–100) and specificity was 30% (95%CI 25–36). Plasma DNA concentration predicted need for intensive care unit admission or death (adjusted odds ratio 1.4; P < 0.0001). Conclusions Plasma DNA may have a role in patients with acute abdominal pain as a marker for inflammation and cancer, and a predictor of intensive care unit admission/mortality

    Low-dose thiamine supplementation of lactating Cambodian mothers improves human milk thiamine concentrations: a randomized controlled trial

    Get PDF
    Background Infantile beriberi-related mortality is still common in South and Southeast Asia. Interventions to increase maternal thiamine intakes, and thus human milk thiamine, are warranted; however, the required dose remains unknown. Objectives We sought to estimate the dose at which additional maternal intake of oral thiamine no longer meaningfully increased milk thiamine concentrations in infants at 24 wk postpartum, and to investigate the impact of 4 thiamine supplementation doses on milk and blood thiamine status biomarkers. Methods In this double-blind, 4-parallel arm randomized controlled dose-response trial, healthy mothers were recruited in Kampong Thom, Cambodia. At 2 wk postpartum, women were randomly assigned to consume 1 capsule, containing 0, 1.2 (estimated average requirement), 2.4, or 10 mg of thiamine daily from 2 through 24 weeks postpartum. Human milk total thiamine concentrations were measured using HPLC. An Emax curve was plotted, which was estimated using a nonlinear least squares model in an intention-to-treat analysis. Linear mixed-effects models were used to test for differences between treatment groups. Maternal and infant blood thiamine biomarkers were also assessed. Results In total, each of 335 women was randomly assigned to1 of the following thiamine-dose groups: placebo (n = 83), 1.2 mg (n = 86), 2.4 mg (n = 81), and 10 mg (n = 85). The estimated dose required to reach 90% of the maximum average total thiamine concentration in human milk (191 µg/L) is 2.35 (95% CI: 0.58, 7.01) mg/d. The mean ± SD milk thiamine concentrations were significantly higher in all intervention groups (183 ± 91, 190 ± 105, and 206 ± 89 µg/L for 1.2, 2.4, and 10 mg, respectively) compared with the placebo group (153 ± 85 µg/L; P < 0.0001) and did not significantly differ from each other. Conclusions A supplemental thiamine dose of 2.35 mg/d was required to achieve a milk total thiamine concentration of 191 µg/L. However, 1.2 mg/d for 22 wk was sufficient to increase milk thiamine concentrations to similar levels achieved by higher supplementation doses (2.4 and 10 mg/d), and comparable to those of healthy mothers in regions without beriberi. This trial was registered at clinicaltrials.gov as NCT03616288.Jelisa Gallant, Kathleen Chan, Tim J Green, Frank T Wieringa, Shalem Leemaqz, Rem Ngik ... et al

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    A global research priority agenda to advance public health responses to fatty liver disease

    Get PDF
    Background & aims An estimated 38% of adults worldwide have non-alcoholic fatty liver disease (NAFLD). From individual impacts to widespread public health and economic consequences, the implications of this disease are profound. This study aimed to develop an aligned, prioritised fatty liver disease research agenda for the global health community. Methods Nine co-chairs drafted initial research priorities, subsequently reviewed by 40 core authors and debated during a three-day in-person meeting. Following a Delphi methodology, over two rounds, a large panel (R1 n = 344, R2 n = 288) reviewed the priorities, via Qualtrics XM, indicating agreement using a four-point Likert-scale and providing written feedback. The core group revised the draft priorities between rounds. In R2, panellists also ranked the priorities within six domains: epidemiology, models of care, treatment and care, education and awareness, patient and community perspectives, and leadership and public health policy. Results The consensus-built fatty liver disease research agenda encompasses 28 priorities. The mean percentage of ‘agree’ responses increased from 78.3 in R1 to 81.1 in R2. Five priorities received unanimous combined agreement (‘agree’ + ‘somewhat agree’); the remaining 23 priorities had >90% combined agreement. While all but one of the priorities exhibited at least a super-majority of agreement (>66.7% ‘agree’), 13 priorities had 90% combined agreement. Conclusions Adopting this multidisciplinary consensus-built research priorities agenda can deliver a step-change in addressing fatty liver disease, mitigating against its individual and societal harms and proactively altering its natural history through prevention, identification, treatment, and care. This agenda should catalyse the global health community’s efforts to advance and accelerate responses to this widespread and fast-growing public health threat. Impact and implications An estimated 38% of adults and 13% of children and adolescents worldwide have fatty liver disease, making it the most prevalent liver disease in history. Despite substantial scientific progress in the past three decades, the burden continues to grow, with an urgent need to advance understanding of how to prevent, manage, and treat the disease. Through a global consensus process, a multidisciplinary group agreed on 28 research priorities covering a broad range of themes, from disease burden, treatment, and health system responses to awareness and policy. The findings have relevance for clinical and non-clinical researchers as well as funders working on fatty liver disease and non-communicable diseases more broadly, setting out a prioritised, ranked research agenda for turning the tide on this fast-growing public health threat

    Oncogenic Signaling Pathways in The Cancer Genome Atlas

    Get PDF
    Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFb signaling, p53 and beta-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy

    On the progenitor of binary neutron star merger GW170817

    Get PDF
    On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just ∼40 Mpc, consistent with the gravitational-wave measurement, and the merger was localized to be at a projected distance of ∼2 kpc away from the galaxy's center. We use this minimal set of facts and the mass posteriors of the two neutron stars to derive the first constraints on the progenitor of GW170817 at the time of the second supernova (SN). We generate simulated progenitor populations and follow the three-dimensional kinematic evolution from binary neutron star (BNS) birth to the merger time, accounting for pre-SN galactic motion, for considerably different input distributions of the progenitor mass, pre-SN semimajor axis, and SN-kick velocity. Though not considerably tight, we find these constraints to be comparable to those for Galactic BNS progenitors. The derived constraints are very strongly influenced by the requirement of keeping the binary bound after the second SN and having the merger occur relatively close to the center of the galaxy. These constraints are insensitive to the galaxy's star formation history, provided the stellar populations are older than 1 Gyr
    corecore