3,236 research outputs found

    Exploring small energy scales with x-ray absorption and dichroism

    Full text link
    Soft x-ray linear and circular dichroism (XLD, XMCD) experiments at the Ce M4,5_{4,5} edges are being used to determine the energy scales characterizing the Ce 4f4f degrees of freedom in the ultrathin ordered surface intermetallic CeAgx_x/Ag(111). We find that all relevant interactions, i. e. Kondo scattering, crystal field splitting and magnetic exchange coupling occur on small scales. Our study demonstrates the usefulness of combining x-ray absorption experiments probing linear and circular dichroism owing to their strong sensitivity for anisotropies in both charge distribution and paramagnetic response, respectively.Comment: 5 pages, 4 figure

    Atomic and itinerant effects at the transition metal x-ray absorption K-pre-edge exemplified in the case of V2_2O3_3

    Full text link
    X-ray absorption spectroscopy is a well established tool for obtaining information about orbital and spin degrees of freedom in transition metal- and rare earth-compounds. For this purpose usually the dipole transitions of the L- (2p to 3d) and M- (3d to 4f) edges are employed, whereas higher order transitions such as quadrupolar 1s to 3d in the K-edge are rarely studied in that respect. This is due to the fact that usually such quadrupolar transitions are overshadowed by dipole allowed 1s to 4p transitions and, hence, are visible only as minor features in the pre-edge region. Nonetheless, these features carry a lot of valuable information, similar to the dipole L-edge transition, which is not accessible in experiments under pressure due to the absorption of the diamond anvil pressurecell. We recently performed a theoretical and experimental analysis of such a situation for the metal insulator transition of (V(1-x)Crx)2O3. Since the importance of the orbital degrees of freedom in this transition is widely accepted, a thorough understanding of quadrupole transitions of the vanadium K-pre-edge provides crucial information about the underlying physics. Moreover, the lack of inversion symetry at the vanadium site leads to onsite mixing of vanadium 3d- and 4p- states and related quantum mechanical interferences between dipole and quadrupole transitions. Here we present a theoretical analysis of experimental high resolution x-ray absorption spectroscopy at the V pre-K edge measured in partial fluorescence yield mode for single crystals. We carried out density functional as well as configuration interaction calculations in order to capture effects coming from both, itinerant and atomic limits

    Inequivalent routes across the Mott transition in V2O3 explored by X-ray absorption

    Get PDF
    The changes in the electronic structure of V2O3 across the metal-insulator transition induced by temperature, doping and pressure are identified using high resolution x-ray absorption spectroscopy at the V pre K-edge. Contrary to what has been taken for granted so far, the metallic phase reached under pressure is shown to differ from the one obtained by changing doping or temperature. Using a novel computational scheme, we relate this effect to the role and occupancy of the a1g orbitals. This finding unveils the inequivalence of different routes across the Mott transition in V2O

    Monte Carlo Methods for Rough Free Energy Landscapes: Population Annealing and Parallel Tempering

    Full text link
    Parallel tempering and population annealing are both effective methods for simulating equilibrium systems with rough free energy landscapes. Parallel tempering, also known as replica exchange Monte Carlo, is a Markov chain Monte Carlo method while population annealing is a sequential Monte Carlo method. Both methods overcome the exponential slowing associated with high free energy barriers. The convergence properties and efficiency of the two methods are compared. For large systems, population annealing initially converges to equilibrium more rapidly than parallel tempering for the same amount of computational work. However, parallel tempering converges exponentially and population annealing inversely in the computational work so that ultimately parallel tempering approaches equilibrium more rapidly than population annealing.Comment: 10 pages, 3 figure

    Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram

    Full text link
    We describe an efficient Monte Carlo algorithm using a random walk in energy space to obtain a very accurate estimate of the density of states for classical statistical models. The density of states is modified at each step when the energy level is visited to produce a flat histogram. By carefully controlling the modification factor, we allow the density of states to converge to the true value very quickly, even for large systems. This algorithm is especially useful for complex systems with a rough landscape since all possible energy levels are visited with the same probability. In this paper, we apply our algorithm to both 1st and 2nd order phase transitions to demonstrate its efficiency and accuracy. We obtained direct simulational estimates for the density of states for two-dimensional ten-state Potts models on lattices up to 200×200200 \times 200 and Ising models on lattices up to 256×256256 \times 256. Applying this approach to a 3D ±J\pm J spin glass model we estimate the internal energy and entropy at zero temperature; and, using a two-dimensional random walk in energy and order-parameter space, we obtain the (rough) canonical distribution and energy landscape in order-parameter space. Preliminary data suggest that the glass transition temperature is about 1.2 and that better estimates can be obtained with more extensive application of the method.Comment: 22 pages (figures included

    Multicanonical Recursions

    Get PDF
    The problem of calculating multicanonical parameters recursively is discussed. I describe in detail a computational implementation which has worked reasonably well in practice.Comment: 23 pages, latex, 4 postscript figures included (uuencoded Z-compressed .tar file created by uufiles), figure file corrected

    Partnership, ownership and control: the impact of corporate governance on employment relations

    Get PDF
    Prevailing patterns of dispersed share ownership and rules of corporate governance for UK listed companies appear to constrain the ability of managers to make credible, long-term commitments to employees of the kind needed to foster effective labour-management partnerships. We present case study evidence which suggests that such partnerships can nevertheless emerge where product market conditions and the regulatory environment favour a stakeholder orientation. Proactive and mature partnerships may also be sustained where the board takes a strategic approach to mediating between the claims of different stakeholder groups, institutional investors are prepared to take a long-term view of their holdings, and strong and independent trade unions are in a position to facilitate organisational change

    A family case of fertile human 45,X,psu dic(15;Y) males

    Get PDF
    We report on a familial case including four male probands from three generations with a 45,X,psu dic(15;Y)(p11.2;q12) karyotype. 45,X is usually associated with a female phenotype and only rarely with maleness, due to translocation of small Y chromosomal fragments to autosomes. These male patients are commonly infertile because of missing azoospermia factor regions from the Y long arm. In our familial case we found a pseudodicentric translocation chromosome, that contains almost the entire chromosomes 15 and Y. The translocation took place in an unknown male ancestor of our probands and has no apparent effect on fertility and phenotype of the carrier. FISH analysis demonstrated the deletion of the pseudoautosomal region 2 (PAR2) from the Y chromosome and the loss of the nucleolus organizing region (NOR) from chromosome 15. The formation of the psu dic(15;Y) chromosome is a reciprocal event to the formation of the satellited Y chromosome (Yqs). Statistically, the formation of 45,X,psu dic(15;Y) (p11.2;q12) is as likely as the formation of Yqs. Nevertheless, it has not been described yet. This can be explained by the dicentricity of this translocation chromosome that usually leads to mitotic instability and meiotic imbalances. A second event, a stable inactivation of one of the two centromeres is obligatory to enable the transmission of the translocation chromosome and thus a stably reduced chromosome number from father to every son in this family

    Weak and strong electronic correlations in Fe superconductors

    Full text link
    In this chapter the strength of electronic correlations in the normal phase of Fe-superconductors is discussed. It will be shown that the agreement between a wealth of experiments and DFT+DMFT or similar approaches supports a scenario in which strongly-correlated and weakly-correlated electrons coexist in the conduction bands of these materials. I will then reverse-engineer the realistic calculations and justify this scenario in terms of simpler behaviors easily interpreted through model results. All pieces come together to show that Hund's coupling, besides being responsible for the electronic correlations even in absence of a strong Coulomb repulsion is also the origin of a subtle emergent behavior: orbital decoupling. Indeed Hund's exchange decouples the charge excitations in the different Iron orbitals involved in the conduction bands thus causing an independent tuning of the degree of electronic correlation in each one of them. The latter becomes sensitive almost only to the offset of the orbital population from half-filling, where a Mott insulating state is invariably realized at these interaction strengths. Depending on the difference in orbital population a different 'Mottness' affects each orbital, and thus reflects in the conduction bands and in the Fermi surfaces depending on the orbital content.Comment: Book Chapte
    • 

    corecore