128 research outputs found
Deterministic seismic hazard assessment for Sultanate of Oman
The Sultanate of Oman forms the southeastern part of the Arabian plate, which is surrounded by relatively high active tectonic zones. Studies of seismic risk assessment in Oman have been an important on-going socioeconomic concern. Using the results of the seismic hazard assessment to improve building design and construction is an effective way to reduce the seismic risk. In the current study, seismic hazard assessment for the Sultanate of Oman is performed through the deterministic approach with particular attention on the uncertainty analysis applying a recently developed method. The input data set contains a defined seismotectonic model consisting of 26 seismic zones, maximum magnitudes, and 6 alternative ground motion prediction equations that were used in four different tectonic environments: obduction zone earthquake (Zagros fold thrust belt), subduction zone earthquakes (Makran subduction zones), normal and strike-slip transform earthquakes (Owen and Gulf of Aden zones), and stable craton seismicity (Arabian stable craton). This input data set yielded a total of 76 scenarios at each point of interest. A 10 % probability that any of the 76 scenarios may exceed the largest median ground acceleration is selected. The deterministic seismic hazards in terms of PGA, 5 % damped spectral acceleration at 0.1, 0.2, 1.0 and 2.0 s are performed at 254 selected points. The ground motion was calculated at the 50th and 84th percentile levels for selected probability of exceeding the median value. The largest ground motion in the Sultanate of Oman is observed in the northeastern part of the country.Oman Ministerial Cabinet (Project 22409017
Probabilistic seismic hazard maps for the sultanate of Oman
This study presents the results of the first probabilistic seismic hazard assessment (PSHA) in the framework of logic tree for Oman. The earthquake catalogue was homogenized, declustered, and used to define seismotectonic source model that characterizes the seismicity of Oman. Two seismic source models were used in the current study; the first consists of 26 seismic source zones, while the second is expressing the alternative view that seismicity is uniform along the entire Makran and Zagros zones. The recurrence parameters for all the seismogenic zones were determined using the doubly bounded exponential distribution except the zones of Makran, which were modelled using the characteristic distribution. Maximum earthquakes were determined and the horizontal ground accelerations in terms of geometric mean were calculated using ground-motion prediction relationships developed based upon seismic data obtained from active tectonic environments similar to those surrounding Oman. The alternative seismotectonic source models, maximum magnitude, and ground-motion prediction relationships were weighted and used to account for the epistemic uncertainty. Hazard maps at rock sites were produced for 5 % damped spectral acceleration (SA) values at 0.1, 0.2, 0.3, 1.0 and 2.0 s spectral periods as well as peak ground acceleration (PGA) for return periods of 475 and 2,475 years. The highest hazard is found in Khasab City with maximum SA at 0.2 s spectral period reaching 243 and 397 cm/s[superscript 2] for return periods 475 and 2,475 years, respectively. The sensitivity analysis reveals that the choice of seismic source model and the ground-motion prediction equation influences the results most.Oman Ministerial Cabinet (project number 22409017
Seismic microzonation for Muscat region, Sultanate of Oman
Site characterization was carried out for Muscat region using the ambient noise measurements applying the horizontal-to-vertical spectral ratio (HVSR) technique and using active seismic survey utilizing the multichannel analysis of surface waves (MASW) of survey data. Microtremors measurements were carried out at 459 sites using short-period sensors. This extensive survey allowed the fundamental resonance frequency of the soft soil to be mapped and areas prone to site amplification to be identified. The results indicate a progressive decrease in the fundamental resonance frequencies from the southern and eastern parts, where the bedrock outcrops, toward the northern coast where a thickness of sedimentary cover is present. Shear wave velocity (Vs) was evaluated using the 2-D MASW at carefully selected 99 representative sites in Muscat. These 99 sites were investigated with survey lines of 52 m length. 1-D and interpolated 2-D profiles were generated up to a depth range 20–40 m. The vertical Vs soundings were used in the SHAKE91 software in combination with suitable seismic input strong motion records to obtain the soil effect. Most of the study area has amplification values less than 2.0 for all the considered spectral periods. The estimated fundamental frequencies obtained using the H/V spectral ratio method and using SHAKE91 are found to be in a relatively good agreement. Maps of spectral amplification, earthquake characteristics on the ground surface for peak ground and spectral accelerations at 0.1, 0.2, 0.3, 1.0, and 2.0 s, for 475 years return period are produced. The surface ground motion maps show that the hazard level is moderate with expected PGA in the range 0.059–0.145 g for 475 years return period.Oman Ministerial Cabinet (project # 22409017
The Effect of Hepatitis B on Humans
The aim of the study is to know the effect of the hepatitis B virus on humans, how the virus is transmitted, what is the method of preventing it, and what treatment is used to alleviate the severity of the disease. The questionnaire was designed via the Google Drive application and distributed via the social networking application (WhatsApp), with complete transparency to the population targeted by the research. The city of Mecca, from the age of (25-55 years), where 550 questionnaires were distributed via social media application groups (WhatsApp) according to available conditions (distancing), and answers to 525 questionnaires were obtained
Celiac disease: how complicated can it get?
In the small intestine of celiac disease patients, dietary wheat gluten and similar proteins in barley and rye trigger an inflammatory response. While strict adherence to a gluten-free diet induces full recovery in most patients, a small percentage of patients fail to recover. In a subset of these refractory celiac disease patients, an (aberrant) oligoclonal intraepithelial lymphocyte population develops into overt lymphoma. Celiac disease is strongly associated with HLA-DQ2 and/or HLA-DQ8, as both genotypes predispose for disease development. This association can be explained by the fact that gluten peptides can be presented in HLA-DQ2 and HLA-DQ8 molecules on antigen presenting cells. Gluten-specific CD4+ T cells in the lamina propria respond to these peptides, and this likely enhances cytotoxicity of intraepithelial lymphocytes against the intestinal epithelium. We propose a threshold model for the development of celiac disease, in which the efficiency of gluten presentation to CD4+ T cells determines the likelihood of developing celiac disease and its complications. Key factors that influence the efficiency of gluten presentation include: (1) the level of gluten intake, (2) the enzyme tissue transglutaminase 2 which modifies gluten into high affinity binding peptides for HLA-DQ2 and HLA-DQ8, (3) the HLA-DQ type, as HLA-DQ2 binds a wider range of gluten peptides than HLA-DQ8, (4) the gene dose of HLA-DQ2 and HLA-DQ8, and finally,(5) additional genetic polymorphisms that may influence T cell reactivity. This threshold model might also help to understand the development of refractory celiac disease and lymphoma
The satisfactory growth and development at 2 years of age of the INTERGROWTH-21st Fetal Growth Standards cohort support its appropriateness for constructing international standards.
BACKGROUND: The World Health Organization recommends that human growth should be monitored with the use of international standards. However, in obstetric practice, we continue to monitor fetal growth using numerous local charts or equations that are based on different populations for each body structure. Consistent with World Health Organization recommendations, the INTERGROWTH-21st Project has produced the first set of international standards to date pregnancies; to monitor fetal growth, estimated fetal weight, Doppler measures, and brain structures; to measure uterine growth, maternal nutrition, newborn infant size, and body composition; and to assess the postnatal growth of preterm babies. All these standards are based on the same healthy pregnancy cohort. Recognizing the importance of demonstrating that, postnatally, this cohort still adhered to the World Health Organization prescriptive approach, we followed their growth and development to the key milestone of 2 years of age. OBJECTIVE: The purpose of this study was to determine whether the babies in the INTERGROWTH-21st Project maintained optimal growth and development in childhood. STUDY DESIGN: In the Infant Follow-up Study of the INTERGROWTH-21st Project, we evaluated postnatal growth, nutrition, morbidity, and motor development up to 2 years of age in the children who contributed data to the construction of the international fetal growth, newborn infant size and body composition at birth, and preterm postnatal growth standards. Clinical care, feeding practices, anthropometric measures, and assessment of morbidity were standardized across study sites and documented at 1 and 2 years of age. Weight, length, and head circumference age- and sex-specific z-scores and percentiles and motor development milestones were estimated with the use of the World Health Organization Child Growth Standards and World Health Organization milestone distributions, respectively. For the preterm infants, corrected age was used. Variance components analysis was used to estimate the percentage variability among individuals within a study site compared with that among study sites. RESULTS: There were 3711 eligible singleton live births; 3042 children (82%) were evaluated at 2 years of age. There were no substantive differences between the included group and the lost-to-follow up group. Infant mortality rate was 3 per 1000; neonatal mortality rate was 1.6 per 1000. At the 2-year visit, the children included in the INTERGROWTH-21st Fetal Growth Standards were at the 49th percentile for length, 50th percentile for head circumference, and 58th percentile for weight of the World Health Organization Child Growth Standards. Similar results were seen for the preterm subgroup that was included in the INTERGROWTH-21st Preterm Postnatal Growth Standards. The cohort overlapped between the 3rd and 97th percentiles of the World Health Organization motor development milestones. We estimated that the variance among study sites explains only 5.5% of the total variability in the length of the children between birth and 2 years of age, although the variance among individuals within a study site explains 42.9% (ie, 8 times the amount explained by the variation among sites). An increase of 8.9 cm in adult height over mean parental height is estimated to occur in the cohort from low-middle income countries, provided that children continue to have adequate health, environmental, and nutritional conditions. CONCLUSION: The cohort enrolled in the INTERGROWTH-21st standards remained healthy with adequate growth and motor development up to 2 years of age, which supports its appropriateness for the construction of international fetal and preterm postnatal growth standards
- …