20,466 research outputs found

    Fixed Number and Quantum Size Effects in Nanoscale Superconductors

    Full text link
    In recent experiments on nanoscale Al particles, whose electron number was fixed by charging effects, a ``negative gap'' was observed in particles with an odd number of electrons. This observation has called into question the use of a grand canonical ensemble in describing superconductivity in such ultrasmall particles. We have studied the effects of fixed electron number and finite size in nanoscale superconductors, by applying the canonical BCS theory for the attractive Hubbard model. The ground state energy and the energy gap are compared with the conventional and parity-projected grand canonical BCS results, and in one dimension also with the exact solutions by the Bethe ansatz. The crossover from the bulk to quantum limit is studied for various regimes of electron density and coupling strength. The effects of boundary conditions and different lattice structures are also examined. A ``negative gap'' for odd electron number emerges most naturally in the canonical scheme. For even electron number, the gap is particularly large for ``magic numbers'' of electrons for a given system size or of atoms for a fixed electron density. These features are in accordance with the exact solutions, but are essentially missed in the grand canonical results.Comment: 2 pages, 4 figures, submitted to Physica C for M2S-HTSC-VI Proceeding

    Heavy quark(onium) at LHC: the statistical hadronization case

    Full text link
    We discuss the production of charmonium in nuclear collisions within the framework of the statistical hadronization model. We demonstrate that the model reproduces very well the availble data at RHIC. We provide predictions for the LHC energy where, dependently on the charm production cross section, a dramatically different behaviour of charmonium production as a function of centrality might be expected. We discuss also the case in elementary collisions, where clearly the statistical model does not reproduce the measurements.Comment: 8 pages, 5 figures; proceeding of SQM09, Buzios, Brazil, to be published in J. Phys.

    Dietary supplementation of essential oils in dairy cows: evidence for stimulatory effects on nutrient absorption

    Get PDF
    Results of recent in vitro experiments suggest that essential oils (EO) may not only influence ruminal fermentation but also modulate the absorption of cations like Na+, Ca2+ and NH4+ across ruminal epithelia of cattle and sheep through direct interaction with epithelial transport proteins, such as those of the transient receptor potential family. The aim of the current study was to examine this hypothesis by testing the effect of a blend of essential oils (BEO) on cation status and feed efficiency in lactating dairy cows. In the experiment, 72 dairy cows in mid-to-end lactation were divided into two groups of 36 animals each and fed the same mixed ration with or without addition of BEO in a 2×2 cross-over design. Feed intake, milk yield and composition, plasma and urine samples were monitored. Feeding BEO elevated milk yield, milk fat and protein yield as well as feed efficiency, whereas urea levels in plasma and milk decreased. In addition, plasma calcium levels increased significantly upon BEO supplementation, supporting the hypothesis that enhanced cation absorption might contribute to the beneficial effects of these EO

    Thermal description of hadron production in e+e- collisions revisited

    Full text link
    We present a comprehensive analysis of hadron production in e+e- collisions at different center-of-mass energies in the framework of the statistical model of the hadron resonance gas. The model is formulated in the canonical ensemble with exact conservation of all relevant quantum numbers. The parameters of the underlying model were determined using a fit to the average multiplicities of the latest measurements at s\sqrt{s} = 10, 29-35, 91 and 130-200 GeV. The results demonstrate that, within the accuracy of the experiments, none of the data sets is satisfactorily described with this approach, calling into question the notion that particle production in e+e- collisions is thermal in origin.Comment: 13 pages, 3 figures; v2: final version accepted for publication in Phys. Lett.

    AAT/WFI observations of the Extragalactic H I Cloud HIPASS J1712-64

    Full text link
    AAT/WFI optical images of a candidate extragalactic HI cloud, HIPASS J1712-64, are presented. The g and r-band CCD mosaic camera frames were processed using a new data pipeline recently installed at the AAO. The resultant stacked images reach significantly deeper levels than those of previous published optical imaging of this candidate, providing a detection limit M_g -7 at a distance of 3Mpc, the inferred distance to HIPASS J1712-64. However, detailed analysis of the images fails to uncover any stellar population associated with the HI emission. If this system is a member of the Local Group then it is pathologically different to other members. Hence, our observations reinforce earlier suggestions that this HI cloud is most likely Galactic in origin and not a Local Volume dwarf galaxy.Comment: 8 pages, accepted for publication in PASA (Figures reduced in resolution, please contact gfl if you wish the higher resolution versions

    Unified Description of Freeze-Out Parameters in Relativistic Heavy Ion Collisions

    Full text link
    It is shown that the chemical freeze-out parameters obtained at CERN/SPS, BNL/AGS and GSI/SIS energies all correspond to a unique value of 1 GeV per hadron in the local rest frame of the system, independent of the beam energy and of the target and beam particles.Comment: revtex, 1 figur

    Enhanced quasiparticle heat conduction of the multigap superconductor Lu2Fe3Si5

    Full text link
    The thermal transport measurements have been made on the Fe-based superconductor Lu2Fe3Si5 (Tc ~ 6 K) down to a very low temperature Tc/120. The field and temperature dependences of the thermal conductivity confirm the multigap superconductivity with fully opened gaps on the whole Fermi surfaces. In comparison to MgB2 as a typical example of the multigap superconductor in a p-electron system, Lu2Fe3Si5 reveals a remarkably enhanced quasiparticle heat conduction in the mixed state. The results can be interpreted as a consequence of the electronic correlations derived from Fe 3d-electrons.Comment: 5 pages, 4 figure

    Electromigration of single metal atoms observed by scanning tunneling microscopy

    Get PDF
    The authors show in this letter that single metal atoms on a Ni(111) surface can be pushed by electromigration forces from a scanning tunneling microscope tip. This repulsive interaction is obsd. over a length scale of 6 nm. While for voltages above -300 mV the atoms are pulled by the microscope tip, the atoms are pushed away below this threshold. This migration is explained by a resonant scattering of strongly correlated electrons. At small voltages chem. forces are pulling the atom, while for larger voltages the at. manipulation is assisted by the tunneling current. [on SciFinder (R)
    corecore