2,486 research outputs found

    Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors

    Get PDF
    We investigated the timing jitter of superconducting nanowire avalanche photodetectors (SNAPs, also referred to as cascade switching superconducting single photon detectors) based on 30-nm-wide nanowires. At bias currents (IB) near the switching current, SNAPs showed sub 35 ps FWHM Gaussian jitter similar to standard 100 nm wide superconducting nanowire single-photon detectors. At lower values of IB, the instrument response function (IRF) of the detectors became wider, more asymmetric, and shifted to longer time delays. We could reproduce the experimentally observed IRF time-shift in simulations based on an electrothermal model, and explain the effect with a simple physical picture

    Electric circuit networks equivalent to chaotic quantum billiards

    Full text link
    We formulate two types of electric RLC resonance network equivalent to quantum billiards. In the network of inductors grounded by capacitors squared resonant frequencies are eigenvalues of the quantum billiard. In the network of capacitors grounded by inductors squared resonant frequencies are given by inverse eigen values of the billiard. In both cases local voltages play role of the wave function of the quantum billiard. However as different from quantum billiards there is a heat power because of resistance of the inductors. In the equivalent chaotic billiards we derive the distribution of the heat power which well describes numerical statistics.Comment: 9 pages, 7 figure

    Pumped quantum systems: immersion fluids of the future?

    Full text link
    Quantum optical techniques may yield immersion fluids with high indices of refraction without absorption. We describe one such technique in which a probe field experiences a large index of refraction with amplification rather than absorption, and examine its practicality for an immersion lithography application. Enhanced index can be observed in a three-level system with a tunable, near-resonant, coherent probe and incoherent pump field that inverts population of the probe transition. This observation contradicts the common belief that large indices of refraction are impossible without absorption, however it is well in accord with existing electromagnetic theory and practice. Calculations show that a refractive index >> 2 is possible with practical experimental parameters. A scheme with an incoherent mixture of pumped and unpumped atoms is also examined, and is seen to have a lower refractive index (~2) accompanied by neither gain nor loss.Comment: 6 pages, 7 figures, accepted for publication in J. Vac. Sci. Tech. B, Nov/Dec 2005 (full reference not known yet

    Afterpulsing and instability in superconducting nanowire avalanche photodetectors

    Get PDF
    We investigated the reset time of superconducting nanowire avalanche photodetectors (SNAPs) based on 30 nm wide nanowires. We studied the dependence of the reset time of SNAPs on the device inductance and discovered that SNAPs can provide a speed-up relative to superconducting nanowire single-photon detectors with the same area but with some limitations: (1) Reducing the series inductance of SNAPs (necessary for the avalanche formation) could result in the detectors operating in an unstable regime, (2) a trade-off exists between maximizing the bias current margin and minimizing the reset time of SNAPs, and (3) reducing the reset time of SNAPs below ∌1 ns resulted in afterpulsing.United States. Intelligence Advanced Research Projects ActivityUnited States. Air Force (Air Force Contract No. FA8721-05-C-0002)United States. Dept. of Energy. Center for Excitonics (Award No. DE-SC0001088

    Effects of accidental microconstriction on the quantized conductance in long wires

    Full text link
    We have investigated the conductance of long quantum wires formed in GaAs/AlGaAs heterostructures. Using realistic fluctuation potentials from donor layers we have simulated numerically the conductance of four different kinds of wires. While ideal wires show perfect quantization, potential fluctuations from random donors may give rise to strong conductance oscillations and degradation of the quantization plateaux. Statistically there is always the possibility of having large fluctuations in a sample that may effectively act as a microconstriction. We therefore introduce microconstrictions in the wires by occasional clustering of donors. These microconstrictions are found to restore the quantized plateaux. A similar effect is found for accidental lithographic inaccuracies.Comment: 4 pages, 2 figures, paper for NANO2002 symposium, will appear in SPIE proceeding

    Critical-Current Reduction in Thin Superconducting Wires Due to Current Crowding

    Full text link
    We demonstrate experimentally that the critical current in superconducting NbTiN wires is dependent on their geometrical shape, due to current-crowding effects. Geometric patterns such as 90 degree corners and sudden expansions of wire width are shown to result in the reduction of critical currents. The results are relevant for single-photon detectors as well as parametric amplifiers

    Gamow Shell Model Description of Neutron-Rich Nuclei

    Get PDF
    This work presents the first continuum shell-model study of weakly bound neutron-rich nuclei involving multiconfiguration mixing. For the single-particle basis, the complex-energy Berggren ensemble representing the bound single-particle states, narrow resonances, and the non-resonant continuum background is taken. Our shell-model Hamiltonian consists of a one-body finite potential and a zero-range residual two-body interaction. The systems with two valence neutrons are considered. The Gamow shell model, which is a straightforward extension of the traditional shell model, is shown to be an excellent tool for the microscopic description of weakly bound systems. It is demonstrated that the residual interaction coupling to the particle continuum is important; in some cases, it can give rise to the binding of a nucleus.Comment: 4 pages, More realistic s.p. energies used than in the precedent versio

    Distribution of nearest distances between nodal points for the Berry function in two dimensions

    Full text link
    According to Berry a wave-chaotic state may be viewed as a superposition of monochromatic plane waves with random phases and amplitudes. Here we consider the distribution of nodal points associated with this state. Using the property that both the real and imaginary parts of the wave function are random Gaussian fields we analyze the correlation function and densities of the nodal points. Using two approaches (the Poisson and Bernoulli) we derive the distribution of nearest neighbor separations. Furthermore the distribution functions for nodal points with specific chirality are found. Comparison is made with results from from numerical calculations for the Berry wave function.Comment: 11 pages, 7 figure
    • 

    corecore