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We investigated the reset time of superconducting nanowire avalanche photodetectors (SNAPs) based on 

30 nm wide nanowires. We studied the dependence of the reset time of SNAPs on the device inductance 

and discovered that SNAPs can provide a speed-up relative to SNSPDs with the same area, but with some 

limitations: (1) reducing the series inductance of SNAPs (necessary for the avalanche formation) could 

result in the detectors operating in an unstable regime; (2) a trade-off exists between maximizing the bias 

current margin and minimizing the reset time of SNAPs; and (3) reducing the reset time of SNAPs below 

~ 1 ns resulted in afterpulsing. 

 

Superconducting nanowire avalanche photodetectors (SNAPs, also referred to as cascade-switching superconducting 

single-photon detectors 1) are based on a parallel-nanowire architecture that performs single-photon counting with 

signal-to-noise ratio (SNR) up to a factor of ~ 4 higher 2 than traditional superconducting nanowire single-photon 

detectors (SNSPDs) 3, 4. Although we recently worked to improve our understanding of the operation mechanism of 

SNAPs 2, 5, the claim that these devices can operate at higher speed than SNSPDs 1 has not yet been confirmed 

experimentally. We studied the reset time of SNAPs and found that although SNAPs can provide a speed-up relative 

to SNSPDs with the same area, the device speed is limited by the thermal relaxation of the nanowires.  

 We investigated the possibility of reducing the reset time of SNAPs below 1 ns by varying the number of 

sections in parallel (N) and by decreasing the device series inductance (LS) necessary for the avalanche formation 1. 

Indeed, as the equivalent kinetic inductance of N nanowires in parallel is N2 times lower than their inductance in 

series, a N-parallel-section SNAP (N-SNAP) would be N2 times faster than a SNSPD of the same active area, if one 

were to neglect certain non-idealities of the device. SNAPs operate by having the current from the section which 

switches to the normal state after absorbing a photon (initiating section) drive the still-superconducting sections 
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(secondary sections) normal, resulting in a current redistribution to the read-out (modeled as a resistor Rload) 2, 5. 

Ideally, no current from the initiating section should be diverted to Rload before the secondary sections have switched 

to the normal state (we call this ideal operation mechanism perfect redistribution 2). However, in practice the current 

leaking to Rload (we call this current leakage current, Ilk) can be substantial. The series inductor is used to minimize 

the leakage current and it has a dominant effect on the device speed 1. 

 We studied the effect of reducing LS on the device operation by introducing a unitless parameter r, which we 

defined as the ratio between Ilk and the current redistributing to all the secondary sections after the initiating section 

switches to the normal state. For perfect redistribution, r = 0. Considering times much shorter than the reset time (so 

that the inductive impedance dominates the read-out resistance, which is typically Rload = 50 Ω): r = L0 / [LS · (N - 1)] 

6, where L0 is the kinetic inductance of one section. Therefore, when decreasing LS (and thus the detector reset time), 

the leakage current increases and a higher bias current is necessary to ensure an avalanche.  

 We characterized ~ 100 N-SNAPs with N = 2, 3 and 4 and with r ranging from 0.1 to 2 7 by measuring the 

photoresponse count rate and the photoresponse inter-arrival time histograms (see supplementary material 8 and Ref. 

2 for details of the fabrication process, detector geometry, and experimental setup). We found that, depending on r 

and on the bias current, devices could exhibit (1) correct operation as single-photon detectors (avalanche regime 2); 

(2) operation in arm-trigger regime2; (3) unstable operation; or (4) after-pulsing. 

 An unstable operating regime of SNAPs was observed in devices with low LS (r > 0.1) biased at low current, 

before the onset of the arm-trigger regime. In the unstable regime, after a hotspot nucleation (HSN) event (caused 

either by the absorption of a photon or by a dark count) occurred in one of the sections of the SNAP, the device 

emitted multiple current pulses. These trains of pulses resulted in a spurious peak in the normalized photoresponse 

count rate (PCR) vs normalized bias current (IB / ISW, where Isw is the device switching current, defined as the 

highest IB the device was able to sustain before switching to the normal state) curves, as shown in Figure 1a for a 

3-SNAP. As the PCR in this operating regime was only weakly dependent on the photon flux incident on the device 

(increasing the photon flux by a factor of ~ 15 changed the count rate by a factor of ~ 4 9), normalization by the 

applied photon flux (see supplementary material 8 for details) meant that the amplitude of the spurious peak 

decreased with increasing optical power. The normalized PCR vs IB curves indicated that the devices transitioned 

through three operating regimes as the bias current was increased: (1) the unstable regime (0.62 ≲ IB / ISW ≲ 0.7); 

(2) the arm-trigger regime (0.7 ≲ IB / ISW ≲ 0.82); and (3) the avalanche regime (IB / ISW ≳ 0.82). The devices 
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worked as single-photon detectors only when operating in the avalanche regime, in which the normalized PCR could 

then be identified with the detection efficiency. Indeed, in the arm-trigger regime two or more HSN events were 

necessary to produce a count 2 and in the unstable regime one single HSN event produced multiple counts. The inset 

of Figure 1a shows the oscilloscope traces of a detector response in the unstable (blue curve) and the avalanche 

regimes (red curve). In the unstable regime, pulses with two distinct average amplitudes were recorded (which we 

called "small" and "large" pulses 10). Unlike the arm-trigger and avalanche regimes (discussed in Ref. 2), the 

unstable regime was not previously observed, so we will discuss it in detail here. 

 

Figure 1. a. Normalized PCR vs normalized IB of a 30-nm-wide 3-SNAP (1.47 μm × 830 nm active area) at different photon fluxes (expressed in 

photons per second: ph/s). The PCR is normalized to the photon flux (see supplementary material in Ref. 8). The kinetic inductance of one 

section was L0 = 13 nH (estimated from the fall time of the detector response pulse) and the value of the series inductor was LS = 1.8 L0 (r = 0.28). 
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The detector avalanche current (IAV), marked by a black arrow, was determined experimentally as reported in Ref. 2. Inset. Oscilloscope traces of 

the photoresponse of the 3-SNAP of Figure 1a measured in the unstable (IB = 0.65 ISW, in blue) and avalanche regimes (IB = 0.9 ISW, in red). The 

two bias currents are marked by the blue and red arrow respectively in Figure 1a. b-f. Electrical equivalent circuit of the different states of a 2-

SNAP operating in the unstable regime. 

 Figure 1b through f illustrate our explanation for the unstable regime. Figure 1b shows the electrical equivalent 

of an unstable 2-SNAP in the steady state. After a HSN event occurs in section 1 (in red, see Figure 1c) no 

avalanche is formed because a large part of the redistributed current leaks into Rload. Once section 1 switches back to 

the superconducting state (Figure 1d), the current in each of the SNAP sections increases at the same rate, but from 

different initial conditions. Indeed, while section 1 is depleted of current, section 2 (in blue) is biased close to ISW, as 

its current was not depleted by the initial HSN event. When the current in section 2 exceeds its ISW and section 2 

switches to the normal state (Figure 1e), the resulting current redistribution (Figure 1f) brings the system back to the 

non-stationary state (section 1 normal, section 2 superconducting) illustrated in Figure 1c. From this point on, the 

different branches of the circuit continue swapping their current periodically, which causes the small pulses 

observed experimentally. Large pulses are then generated when an avalanche forms in the device as a result of the 

occurrence of several subsequent HSN events during the instability cycle. The avalanche stops the instability cycle 

and restores the device to the stationary condition illustrated in Figure 1b. To support our model of the device 

operation, we simulated the current dynamics of a 2-SNAP and a 3-SNAP with r = 1 by using the electrothermal 

model described in Ref. 5 and reproduced the unstable regime (see supplementary material 8). 

 We reduced the photoresponse fall time of SNAPs (the time constant of the exponential decay of the detector 

response pulse) by decreasing the device series inductance (LS) as shown in Figure 2a for 4-SNAPs (for r = 0.125 to 

1). However, the resulting decrease in fall time came at the price of an increased avalanche current (IAV) as shown in 

Figure 2b, where the avalanche currents of the same detectors shown in Figure 2a are marked by colored arrows on 

the normalized PCR vs bias current curves. The values of IAV were determined experimentally as reported in Ref. 2. 

A high IAV is undesirable because the bias range in which the devices operate as low-jitter single-photon detectors 

decreases with increasing IAV (as reported in Ref. 2, 11). Therefore, we concluded that a trade-off exists between 

minimizing the reset time and maximizing the bias margin of these devices. 
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Figure 2. a. Single-shot oscilloscope trace of the photoresponse pulses of 30-nm-wide 4-SNAPs (1.47 μm × 1.43 nm active area) with different 

values of LS. The kinetic inductance of one section was L0 = 13 nH (estimated from the fall time of the detector response pulse). The devices were 

biased in avalanche regime, at IB = 0.98 ISW. The waveforms were normalized by their maximum. b. PCR (normalized to the PCR at the switching 

current) vs IB / ISW of the same 4-SNAPs shown in Figure 2a. The photon flux on the device active area was 2.0·107 photons per second. c. IAV vs 

r for 2-, 3- and 4-SNAPs.  

 Figure 2c shows the dependence of the experimental values of the avalanche current on N and r. When 

characterizing 2-, 3- and 4-SNAPs with decreasing values of LS, we observed an increase in IAV with increasing r. 

The increase in IAV was more pronounced for SNAPs with low N, because for a certain value of Ilk the current 

redistributed to each secondary section is Ilk / (N-1) lower than in case of perfect redistribution. The leakage current 

causes a larger increase in the avalanche current for lower N because the ratio between Ilk / (N-1) and the bias current 

of each secondary section is larger. This behavior was predicted by an approximate model of the device operation 

which assumes that all the current of the initiating section is redistributed to the secondary sections and to Rload (see 

supplementary material 8). 

 We performed time-resolved measurements to verify whether the decrease in the photoresponse fall time shown 

in Figure 2a corresponded to an effective decrease in the detector reset time (as the reset time and the photoresponse 

fall time scale differently with the device inductance in similar detectors 12, 13). Figure 3a and b show the measured 
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oscilloscope persistence traces and the photoresponse inter-arrival time histograms of the same devices shown in 

Figure 2a and b, when biased in avalanche regime (at IB = 0.98 ISW). Strikingly, we observed that all detectors with a 

reset time below ~ 1 ns (estimated as in Ref. 2) showed afterpulsing, as shown in Figure 3a. The afterpulsing also 

manifested itself in a peak in the inter-arrival time histograms shown in Figure 3b. Although every sub-ns-reset-time 

device exhibited afterpulsing, the afterpulsing was not observed on every photoresponse pulse 14, as shown by the 

oscilloscope persistence trace. 

 

Figure 3. a. Oscilloscope persistence map of the response of the 4-SNAP with r = 1 of Figure 2a and b. The device was biased in the avalanche 

regime, at IB = 0.98 ISW. The color represents the number of occurrences of a certain point (due to overlapping waveforms). Note the logarithmic 

color scale, and the marked difference in counts between the main (red) region, and after-pulsing (green) regions. b. Histograms of the 

photoresponse pulse inter-arrival time for the same devices used in Figure 2a and b. The devices were biased in the avalanche regime, at 

IB = 0.98 ISW.  

 The afterpulsing we observed on our sub-1-ns-reset-time devices is a different phenomenon from the unstable 

regime shown in Figure 1 and from the afterpulsing due to the read out circuit 15 (see supplementary material 8). We 

attributed the origin of the afterpulsing to the thermal relaxation dynamics of the superconducting nanowires. To 

support our hypothesis, we used the electrothermal model to simulate the recovery after an HSN event of the 

initiating section of a 3-SNAPs with the same series inductance as a correctly operating device, as shown in 

Figure 4a and b, and as an afterpulsing device, as shown in Figure 4c and d.  For both devices, after the normal 

domain is formed, the nanowire switches back to the superconducting state when its critical current (IC) 16 becomes 

larger than the current through it (Ii). Once the superconductivity is restored, both Ii and IC relax by increasing 

towards the steady-state values. While Ii increases with a time constant (L0 / 3 + LS) / Rload, IC increases at the 

thermal relaxation rate, which decreases as the nanowire temperature (T) approaches the substrate temperature 5, 17. 
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Therefore, although the relaxation of IC is initially faster than that of Ii, it slows down as T decreases. Figure 4a 

shows that, if the initial thermal relaxation rate is sufficiently shorter than the electrical relaxation rate, once the 

superconductivity is restored both Ii and IC increase towards the steady-state values without crossing again. 

Therefore, the device fully resets without afterpulsing, as shown in Figure 4b. However, if the thermal and electrical 

relaxation rates are commensurate and the bias current is close to the steady-state critical current, Ii may exceed IC 

again during the recovery, causing the relaxation-oscillation (RO) type behavior shown in Figure 4c (i.e. the 

afterpulsing repeats). The few-nanosecond-long RO phase in Figure 4d shows that our simulations could 

qualitatively reproduce the afterpulsing observed experimentally. We attributed the fact that the device relaxes to the 

superconducting state after the RO phase, instead of latching 18, to the slight imbalance between the current through 

the initiating and secondary sections (created as a result of the avalanche formation), which prevents all of the 

sections from latching to the normal state at the same time. 

 

Figure 4. a. Simulated recovery after a HSN event (at time 0 s, see black arrow) of the current through the initiating section (Ii, in red) of a 

3-SNAP and  its critical current (IC, in blue). For the simulated device: L0 = 13 nH; LS = L0 (r = 0.5). b. Simulation of the output current (Iout) for 

the same device of Figure 4a. The red dashed frame encloses the region of the simulation shown in Figure 4a. c. Simulated recovery after an HSN 

event (at time 0 s, see black arrow) of Ii (in red) and IC (in blue) for a 3-SNAP with L0 = 13 nH; LS = 0.25 L0 (r = 2). d. Simulated Iout for the same 

device of Figure 4c. The first pulse starts at time 0 s, when the HSN event occurs in the initiating section. The second and third pulses start at 

time 310 ps and 730 ps, when Ii exceeds IC during the current recovery as shown in Figure 4c. The red dashed frame encloses the initial stages of 

the simulation shown in Figure 4c. 

 Although we did not observe afterpulsing on any devices with reset times longer than ~ 1 ns, we observed 

afterpulsing on all of the devices with reset time below ~ 1 ns. We were able to measure afterpulsing-free SNAPs 

with lower reset times than SNSPDs with the same area (up to a factor of ~ 2 by using 3-SNAPs with r = 0.5, see 

supplementary material 8), indicating that SNAPs can in principle achieve lower reset time than SNSPDs with the 
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same area. However, the speed of superconducting-nanowire-based detectors appears to be ultimately limited by the 

nanowire thermal-relaxation dynamics. Indeed, when the electrical- and thermal-relaxation time scales become 

comparable, superconducting-nanowire-based detectors appear to malfunction by either latching or afterpulsing, 

depending on the detector architecture and electrical environment 18.  

 We investigated the speed limit of SNAPs by decreasing the series inductor (LS). As we decreased LS, we 

observed that: (1) SNAPs with low LS (r > 0.1) emitted trains of current pulses when biased at a lower current than 

the onset of the arm-trigger regime; (2) the desired decrease in the detector reset time came at the price of an 

increase in the avalanche current, which decreased the bias range for the correct operation of the devices. Our results 

indicate that the reset time of SNAPs can be made lower than SNSPDs with the same area by decreasing LS. 

However, the reset time could not be reduced below ~ 1 ns, as the devices showed afterpulsing. Based on our 

simulations, we attributed the unstable regime to the rebiasing of the SNAP after an HSN event occurred in one of 

the sections and the afterpulsing effect to the electrothermal relaxation of the device after an avalanche was 

triggered. We suspect that the limit on the reset time of ~ 1 ns we observed on our devices was due to the device 

materials and geometries we employed. Therefore, engineering the thermal environment of the superconducting 

nanowires (by modifying the substrate material or surface preparation, or by patterning thermally conductive 

materials on the nanowires) may result in a decrease of the thermal-relaxation time, which is required to allow 

reducing the detector reset time below 1 ns. 
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was supported by IARPA. The work at MIT Lincoln Laboratory was sponsored by the United States Air Force under 
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Fabrication process and experimental setup 

We fabricated ultranarrow-nanowire (30-nm width, 100-nm pitch) superconducting nanowire avalanche 

photodetectors with 2, 3 and 4 sections in parallel (2-, 3- and 4-SNAPs) on 5.5-nm-thick NbN films with active area 

varying from 0.8 to 2.1 µm2 as described in Ref. 1. We measured photoresponse count rate (PCR) and photoresponse 

inter-arrival time histograms of these detectors in a cryogenic probe station at a temperature of 4.7 K. We used a 

pulsed gain-switched laser diode (15-ns pulse width; 50-MHz repetition rate; 1550-nm wavelength) for PCR 

measurements and a continuous-wave (CW) laser (1550-nm wavelength) for inter-arrival time measurements. 

Further details on our experimental setup are reported in Ref. 1. 

 The photoresponse count rate was estimated as PCR = CR - DCR, where CR is the count rate measured when 

the detector was illuminated and DCR is the dark count rate measured when the detector was not illuminated. The 

photon flux was calculated as Nph / H, where Nph is the number of photons per second incident on the device active 

area and H is a normalization factor 1. 

 We ensured that the SNAPs operating in avalanche mode were operating in single-photon-detection regime by 

verifying that the dependence of photoresponse counts on incident power was linear 2. 

Amplitude of the response pulses in the unstable regime 

We measured the histograms of the amplitude of the response pulses of SNAPs biased in the avalanche and unstable 

regimes. In the avalanche regime, the amplitudes of the detector pulses were distributed around one single average 

value, which resulted in a histogram with a single peak as shown in Figure SM 1a. In the unstable regime, two sets 

of pulses were observable (small and large pulses) with two distinct average amplitudes, which resulted in a 

histogram with two peaks as shown in Figure SM 1b.  

 Figure SM 1c shows the PCR (normalized to the PCR at the switching current, ISW) vs bias current (IB) curves 

of a 3-SNAP measured with different trigger levels of the discriminator of the pulse counter. The spurious peak due 

to the unstable regime significantly decreased with increasing the trigger level (see black arrow). Indeed, as the 

trigger level was made larger than the average amplitude of the small pulses generated by the device, mostly the 

large pulses were recorded by the counter. In Figure 1a we intentionally chose to count the pulses of both amplitudes 

to make the unstable regime evident on the PCR vs IB curves. 
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Figure SM 1. a, b. Histogram of the photoresponse pulse amplitude of the 3-SNAP of Figure 1a measured in the avalanche (IB = 0.9 ISW, in red) 

and unstable (IB = 0.65 ISW, in blue) regimes. The counts were normalized to the maximum of the histogram. c. PCR (normalized to the PCR at 

the switching current) vs IB / ISW of a 3-SNAP with section inductance L0 = 13 nH (estimated from the fall time of the detector response pulse) 

and series inductance LS = 1.8 L0 (redistribution ratio r = 0.28). The photon flux on the device active area was 4·106 photons per second. The three 

curves were measured with three different trigger levels: 75 mV (blue), 100 mV (green) and 150 mV (red). The black arrow indicates the 

direction of increasing trigger level. 

Electrothermal simulation of 2- and 3-SNAPs in the unstable regime 

Figure SM 2 shows the electrothermal simulations of the current dynamics of a 2- (Figure SM 2a and b) and a 

3-SNAP (Figure SM 2c and d) with r = 1, which supports our explanation of the unstable regime.  

 For the 2-SNAP, after a hotspot nucleation (HSN) event occurs in section 1 (see red curve in Figure SM 2a), no 

avalanche formed. During the current recovery in the nanowires, the current in section 2 (I2) exceeds the nanowire 

switching current (I2 > ISW, see blue curve in Figure SM 2a), which starts a periodic sequence of current pulses in the 

read out, as shown in Figure SM 2b. As we did not include the occurrence of other HSN events in our simulation, 

the instability cycle repeated for the whole duration of the simulation (~ 40 ns). 

 For the 3-SNAP, after two subsequent hotspot nucleation (HSN) events occur in sections 1 and 2 (at time = 0 s 

and 750 ps, Figure SM 2c), no avalanche is formed (unlike what happens in arm-trigger regime 1) because 

approximately half of the redistributed current leaks into the read-out resistor Rload (as r = 1). Once section 2 

switches back to the superconducting state, the current through Rload (Iout, Figure SM 2d) starts decreasing and the 

currents in the SNAP sections increase at the same rate, but from different initial conditions. Indeed, while sections 

1 and 2 are depleted of current, section 3 is biased close to ISW, as it remained in the superconducting state. When 
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the current in section 3 exceeds the ISW of that section, the different branches of the circuit start swapping their 

current periodically. 

 

Figure SM 2. a. Electrothermal simulation of the currents (I1 in red, I2 in blue) through the sections of a 2-SNAP with L0 = 13 nH and series 

inductance LS = L0 (r = 1) biased at IB = 0.71 ISW. Black arrows mark the time at which the HSN event occurs in section 1 (time = 0 s), and the 

time at which the current through section 2 becomes overcritical (I2 > ISW). b. Electrothermal simulation of the current through Rload for the same 

device and conditions used in Figure SM 2a. The red dashed frame encloses the initial stages of the simulation shown in Figure SM 2a. c. 

Electrothermal simulation of the three currents (I1 in red, I2 in blue, and I3 in green) through each of the sections of a 3-SNAP with L0 = 13 nH 

and series inductance LS = 0.5 L0 (r = 1) biased at IB = 0.68 ISW. Black arrows mark the time at which the first HSN event occurs in section 1 

(time = 0 s), the second HSN event occurs in section 2 (time = 750 ps) and the current through section 3 becomes overcritical. d. Electrothermal 

simulation of the current through Rload for the same device and conditions used in Figure SM 2c. The red dashed frame encloses the initial stages 

of the simulation shown in Figure SM 2c. 

Dependency of the avalanche current on the number of sections and r 

In order to have a qualitative estimate of how the avalanche current (IAV) depends on the number of sections (N) and 

r, we adopted a simplified model of the device operation which assumes that all the current of the initiating section 

is redistributed to the secondary sections and to Rload (so no current remains in the initiating section). The current 

through the secondary sections after the initiating section switched to the normal state can be written as: 

Is = (IB / N) + δI, where δI is the current redistributed from the initiating section. Assuming that all the current in the 

initiating section redistributes to the secondary sections and to Rload, we can write δI = IB / [N · (N - 1) · (r + 1)], 

which yields: IAV / ISW = (N - 1) / [N - r / (r + 1)] (which assumes that all the sections have the same switching 

current ISW / N). This expression of the avalanche current, obtained by assuming that the current of the initiating 
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section can redistribute to Rload, is higher than the one calculated assuming perfect redistribution 1 by a factor 

dependent on r. 

Discussion on the afterpulsing of sub-1-ns-reset-time devices 

Although when comparing Figure 3a with the inset of Figure 1a the afterpulsing may seem analogous to the unstable 

regime, the two effects are different for the following reasons: (1) the unstable regime occurred below IAV, while the 

afterpulsing occurred above IAV; (2) in the unstable regime the pulses generated by the detectors had two distinct 

average amplitudes, while the amplitudes of the pulses generated by afterpulsing devices were distributed around 

one single average value; (3) in the unstable regime the detector emitted pulses continuously, while the afterpulsing 

had a duration of only ~ 2 ns; and (4) as a consequence of (3), unlike the unstable regime afterpulsing could not be 

detected in the PCR vs IB curves because the electrical bandwidth of the pulse counter used for those measurements 

was only 250 MHz, so the sequence of pulses occurring within less than 4 ns from the first photodetection pulse was 

integrated and triggered one single count. 

 The differences between the afterpulsing we measured on our fast-resetting devices and the afterpulsing 

reported in Ref. 3 on standard superconducting nanowire single photon detectors (SNSPDs) are: (1) the time scale of 

the afterpulsing in in Ref. 3 is of the order of 100 ns, while the afterpulsing we observed happened within few ns 

from the main pulse; and (2) unlike what reported in Ref. 3 the afterpulsing we observed did not depend on the 

detector count rate. 

Low-reset-time SNAPs 

By reducing the series inductance (LS), we fabricated SNAPs not affected by afterpulsing with lower reset times than 

SNSPDs with the same area. Figure SM 3a shows the normalized photoresponse count rate (PCR) vs bias current 

(IB) curve of a 3-SNAP with r = 0.5 (LS = L0). The avalanche current of the device (IAV = 0.81ISW, see black arrow in 

Figure SM 3a) was only 4 % higher than the avalanche current of 3-SNAPs with r = 0.1 (LS = 10 L0, IAV = 0.78 ISW, 

see Figure 2c), so the reduction of the series inductance by a factor of 10 did not significantly affect the bias margin 

of the device. Figure SM 3b and c show the measured oscilloscope persistence traces and the photoresponse 

inter-arrival time histograms of the same device shown in Figure SM 3a, when biased in avalanche regime (at 

IB = 0.98 ISW). The device showed a reset time  of 1.9 ns (estimated as in Ref. 1)and no afterpulsing. The total kinetic 
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inductance of the device was LSNAP = 1.3 L0, which is a factor of 2.3 lower than the kinetic inductance of a SNSPD 

with the same area (LSNSPD = 3 L0). 

 

Figure SM 3. a. Normalized PCR vs IB / ISW of a 30-nm-wide 3-SNAP (1.47 × 1.47 µm2 active area) with r = 0.5 (LS = L0). The PCR is 

normalized to the photon flux (23 Mph/s). The kinetic inductance of one section was L0 = 22 nH (estimated from the fall time of the detector 

response pulse). The detector avalanche current (IAV) was marked by a black arrow. b. Oscilloscope persistence map of the response of the 

3-SNAP of Figure SM 3a. The device was biased in the avalanche regime, at IB = 0.98 ISW. The color represents the number of occurrences of a 

certain point (due to overlapping waveforms). c. Histograms of the photoresponse pulse inter-arrival time for the same device used in 

Figure SM 3a and b. The devices was biased in the avalanche regime, at IB = 0.98 ISW. 
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