46 research outputs found

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Chemically reactive two-phase flow of viscous-Casson fluids in a rotating channel

    No full text
    An analysis is carried out to examine the effects of chemical reactions on the flow of two-phase non-miscible liquids streaming through rotating parallel plates. The plates are isothermal and insulated electrically. The Couette flow is considered for the electrically conducting two phase viscous-Casson fluids under the impacts of inclined magnetic flux and applied electric field. The problem is also discussed under the influence of different orders of chemical reactions. The modelled equations elaborating the present situation under the implemented suppositions are transformed to ordinary differential equations. The numerical solution for the obtained equations is obtained with suitable matching conditions at the interface region using the shooting technique. The results are also validated by comparing them with the results of a well-known finite difference based numerical scheme known as the Keller-Box method. The numerical results for sundry parameters involved in the flow problem are presented through graphs and discussed in detail

    Latitudinal profile of the ionospheric disturbance dynamo magnetic signature: comparison with the DP2 magnetic disturbance

    No full text
    During magnetic storms, the auroral electrojets intensification affects the thermospheric circulation on a global scale. This process which leads to electric field and current disturbance at middle and low latitudes, on the quiet day after the end of a storm, has been attributed to the ionospheric disturbance dynamo (Ddyn). The magnetic field disturbance observed as a result of this process is the reduction of the H component amplitude in the equatorial region which constitutes the main characteristic of the ionospheric disturbance dynamo process, associated with a westward electric current flow. The latitudinal profile of the Ddyn disturbance dynamo magnetic signature exhibits an eastward current at mid latitudes and a westward one at low latitudes with a substantial amplification at the magnetic equator. Such current flow reveals an "anti-Sq" system established between the mid latitudes and the equatorial region and opposes the normal Sq current vortex. However, the localization of the eastward current and consequently the position and the extent of the "anti-Sq" current vortex changes from one storm to another. Indeed, for a strong magnetic storm, the eastward current is well established at mid latitudes about 45° N and for a weak magnetic storm, the eastward current is established toward the high latitudes (about 60° N), near the Joule heating region, resulting in a large "anti-Sq" current cell. The latitudinal profile of the Ddyn disturbance as well as the magnetic disturbance DP2 generated by the mechanism of prompt penetration of the magnetospheric convection electric field in general, show a weak disturbance at the low latitudes with a substantial amplification at the magnetic equator. Due to the intensity of the storm, the magnitude of the DP2 appears higher than the Ddyn over the American and Asian sector contrary to the African sector

    Structural modification of ellipticine derivatives with alkyl groups of varying length is influential on their effects on human DNA topoisomerase II: a combined experimental and computational study

    Get PDF
    The compounds reducing tumor cell viability and disrupting DNA topoisomerase reactions have been widely used in anticancer drug development. Ellipticine (5,11-dimethyl-6H-pyrido[4,3-b]carbazole) is a potent intercalating agent that interferes with nucleic acid processing through interaction with DNA topoisomerase II. Although ellipticine is a well-characterized compound, it is not a widely-accepted drug due to the adverse effects detected upon administration. We have previously reported two novel ellipticine derivatives, N-methyl-5-demethyl ellipticine (ET-1) and 2-methyl-N-methyl-5-demethyl ellipticinium iodide (ET-2) as potent compounds targeting DNA topoisomerase II. This study covers an extended synthesis, characterization, and activity data for five new salts of N-methyl 5-demetyl ellipticine (Z-1, Z-2, Z-4, Z-5 and Z-6) having several organic halides and their effects on human topoisomerase II enzymes. Moreover, combined in silico studies were conducted for better understanding of modes of action of studied molecules at the binding pocket of target. Our results showed that three of the derivatives (Z-1, Z-2, and Z-6) have considerable effect on the catalytic activity of human topoisomerase II implying the influence of alkyl groups added to the parental structure of ellipticine. © 2019, Springer Science+Business Media, LLC, part of Springer Nature
    corecore